Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (9): 18-27    DOI: 10.13523/j.cb.2005056
    
Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity
CHEN Dong,LI Cheng-cheng,SHI Zhong-ping()
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(10715KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The highly stable EPS-nano-selenium complexes (E-SeNPs) were safely and simply prepared using Lactobacillus plantarum exopolysaccharides (EPS) as stabilizers and coating agents. The stability and antioxidant activity were also studied. Methods: The size, morphology, structure and stability of E-SeNPs were measured by transmission electron microscopy (TEM), dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-vis), and Fourier transform infrared spectroscopy (FT-IR). In addition, the antioxidant activity of E-SeNPs in vitro was evaluated by measuring the reducing ability and the clearance rate of ABTS+. Results: E-SeNPs with good dispersibility and stability were successfully prepared. The average particle size of the prepared E-SeNPs is (45.17±11.9)nm, with a negative charge (-31.3mV). Meanwhile, the E-SeNPs can be stable in the aqueous solution for 20 days. It was found by FT-IR analysis that the stability was due to the coating effect of EPS. Finally, at the same concentration, the reducing power and ABTS+ radical scavenging rate of E-SeNPs were significantly higher than those of EPS and selenium nanoparticles (SeNPs), showing good antioxidant activity. Conclusion: A new type of SeNPs stabilizer and coating agents were developed. It was simple and safe to prepare highly stable, water-dispersible SeNPs with good antioxidant activity.



Key wordsLactobacillus plantarum      Exopolysaccharide      Selenium nanoparticles      Stability      Antioxidant activity     
Received: 25 May 2020      Published: 12 October 2020
ZTFLH:  Q819  
Corresponding Authors: Zhong-ping SHI     E-mail: zpshi@jiangnan.edu.cn
Cite this article:

CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity. China Biotechnology, 2020, 40(9): 18-27.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2005056     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I9/18

Fig.1 Schematic illustration for isolation, screening and identification of Lactobacillus plantarum (a)Fuyuan pickles (b)Colony pictures (c)Wiredrawing test (d)Yield of EPS from different strains (e)Gram staining of Lactobacillus plantarum
Fig.2 Pictures of selenium nanoparticles synthesized under different ratios
Fig.3 Uv-vis absorption spectra of E-SeNPs synthesized at different ratios
Fig.4 Size distribution of E-SeNPs synthesized at different ratios
Fig.5 Characterization of SeNPs, E-SeNP, EPS-R040 (a) FT-IR spectra of SeNPs, E-SeNP, and EPS-R040 (b) Zeta potential results of SeNPs, E-SeNP, EPS-R040
Fig.6 TEM results of E-SeNPs and SeNPs at different magnifications; the size statistical analysis and distributions of E-SeNPs (a),(b)Morphological structures of E-SeNPs observed by TEM (c),(d)Morphological structures of SeNPs observed by TEM (e),(f)Size distributions of E-SeNPs analyzed by TEM and DLS
Fig.7 The digital photographs of selenium nanoparticles stored at 4℃ for different days Left: Se:EPS=1:0; Right: Se:EPS=4:3 (a)-(f) The digital photographs of selenium nanoparticles stored at 4℃ for 0, 5, 10, 15, 20, and 23 days
Fig.8 The reductive activity of E-SeNPs synthesized at different ratios
Fig.9 Scavenging effect of the E-SeNPs synthesized at different ratios on ABTS+
[1]   Kieliszek M. Selenium-fascinating microelement, properties and sources in food. Molecules, 2019,24(7):1298.
[2]   Nazıroğlu M, Muhamad S, Pecze L. Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: focus on selenium nanoparticles. Expert Review of Clinical Pharmacology, 2017,10(7):773-782.
pmid: 28463572
[3]   Xu C L, Qiao L, Guo Y, et al. Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei 393. Carbohydrate Polymers, 2018,195:576-585.
pmid: 29805014
[4]   Zhang J S, Wang H L, Yan X X, et al. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Science, 2005,76(10):1099-1109.
[5]   Wu S S, Sun K, Wang X, et al. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles. Journal of Agricultural and Food Chemistry, 2013,61(30):7268-7275.
doi: 10.1021/jf4000083 pmid: 23822637
[6]   Shen Y H, Wang X F, Xie A J, et al. Synthesis of dextran/Se nanocomposites for nanomedicine application. Materials Chemistry and Physics, 2008,109(2-3):534-540.
doi: 10.1016/j.matchemphys.2008.01.016
[7]   Chen T F, Wong Y S, Zheng W J, et al. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids and Surfaces B: Biointerfaces. 2008,67(1):26-31.
doi: 10.1016/j.colsurfb.2008.07.010 pmid: 18805679
[8]   Yang F, Tang Q M, Zhong X Y, et al. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. International Journal of Nanomedicine. 2012,7:835-844.
[9]   Wang J G, Zhang Y F, Yuan Y H, et al. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides. Food and Chemical Toxicology. 2014,68:183-189.
[10]   邵丽. 产胞外多糖乳杆菌的筛选及其多糖的分离、结构和生物活性研究. 无锡: 江南大学, 2015.
[10]   Shao L. Screening of exopolysaccharide-producing Lactobacilli and separation, structure and bioactivities of exopolysaccharide. WuXi. Jiangnan University, 2015.
[11]   Xiao Y D, Huang Q L, Zheng Z M, et al. Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. International Journal of Biological Macromolecules, 2017,99:483-491.
[12]   王家辉, 刘杉杉, 张鑫, 等. 牛蒡不同部位多糖的抗氧化与抗凝血活性研究. 食品工业科技, 2020,41(6):305-310.
[12]   Wang J H, liu B B, Zhang X. et al. Antioxidant and anticoagulant activities of polysaccharides extracted from different parts of Arctium lappa L. Science and Technology of Food Industry, 2020,41(6):305-310.
[13]   Chen W W, Li Y F, Yang S, et al. Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles. Carbohydrate Polymers, 2015,132:574-581.
pmid: 26256384
[14]   Chen W W, Lin Y, Jiang Q X, et al. Synthesis of varisized chitosan-selenium nanocomposites through heating treatment and evaluation of their antioxidant properties. International Journal of Biological Macromolecules, 2018,114:751-758.
pmid: 29588203
[15]   Fesharaki P J, Nazari P, Shakibai M, et al. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Brazilian journal of microbiology, 2010,41(2):461-466.
pmid: 24031517
[16]   赵胜男. 不同尺寸纳米硒的制备及其生物活性研究. 黑龙江: 佳木斯大学, 2019.
[16]   Zhao S N. Preparation and bioactivity of different sizes nano-selenium. Heilongjiang: Jiamusi University, 2019.
[17]   王翼雪. 富硒乳酸菌的筛选及富硒发酵工艺的研究. 哈尔滨: 哈尔滨商业大学, 2017.
[17]   Wang Y X. Screening of se-enriched Lactobacillus and optimization of fermentation conditions. Harbin: Harbin University of Commerce, 2017.
[18]   许定. 睾丸酮丛毛单胞菌S44中单质硒纳米颗粒的形成与稳定机理和房间芽胞杆菌属一新种鉴定. 武汉: 华中农业大学, 2018.
[18]   Xu D. Formation and stabilization of selenium nanoparticles in Comamonas testosteroni S44 and identification of a novel species of Domibacillus. WuHan: Huazhong Agricultural University, 2018.
[19]   Li C C, Zhou L, Yang H, et al. Self-assembled exopolysaccharide nanoparticles for bioremediation and green synthesis of noble metal nanoparticles. ACS Applied Materials & Interfaces, 2017,9(27):22808-22818.
pmid: 28613815
[20]   Wang X F, Zhang W Q, Shen Y H, et al. Facile, one-step controlled synthesis of Se nanocrystals in the presence of L-tyrosine. Materials Science & Engineering B, 2011,176(14):1093-1098.
[21]   高慧娟, 冯九海, 韩玉琦, 等. 富硒荷叶离褶伞菌丝体中硒多糖提取工艺的优化及红外光谱分析. 食品与发酵工业, 2018,44(3):151-158.
[21]   Gao H J, Feng J H, Han Y Q, et al. Optimization of extraction technology and IR spectroscopy of Se-polyasccharide from Selenium-enriched Lyophyllum decastes mycelium. Food and Fermentation Industries, 2018,44(3):151-158.
[22]   Liu W, Li X L, Wong Y S, et al. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano, 2012,6(8):6578-6591.
doi: 10.1021/nn202452c pmid: 22823110
[23]   Zhang C Y, Zhai X N, Zhao G H, et al. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohydrate Polymers, 2015,134:158-166.
doi: 10.1016/j.carbpol.2015.07.065 pmid: 26428112
[24]   Wang H, Wei W, Zhang S Y, et al. Melatonin‐selenium nanoparticles inhibit oxidative stress and protect against hepatic injury induced by Bacillus Calmette-Guérin/lipopolysaccharide in mice. Journal of Pineal Research, 2005,39(2):156-163.
pmid: 16098093
[25]   Esumi K, Akiyama S, Yoshimura T. Multilayer formation using oppositely charged gold and silver dendrimer nanocomposites. Langmuir, 2003,19(18):7679-7681.
[26]   Kong H L, Yang J X, Zhang Y F. et al. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. International Journal of Biological Macromolecules, 2014,65:155-162.
pmid: 24418338
[27]   Wang Y Y, Qiu W Y, Sun L, et al. Preparation, characterization, and antioxidant capacities of selenium nanoparticles stabilized using polysaccharide-protein complexes from Corbicula fluminea. Food Bioscience, 2018,26:177-184.
[28]   Cai W F, Hu T, Bakry A M, et al. Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles dispersed by a hyperbranched polysaccharide from Lignosus rhinocerotis. Ultrasonics Sonochemistry. 2018,42:823-831.
[29]   Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 2008,174(1):27-37.
doi: 10.1016/j.cbi.2008.05.003 pmid: 18547552
[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[3] MING Yue,ZHAO Zi-tong,WANG Hong-lei,LIANG Zhi-hong. Modification Strategy of Enzyme Thermal Stability Based on Sequence and Structure Analysis[J]. China Biotechnology, 2021, 41(10): 100-108.
[4] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[5] LIN Jian-hua,HAN Jun,Xu Han-mei. Developing the Stability of PD-1 / PD-L1 Immune Checkpoint Antibody Drug Formulation[J]. China Biotechnology, 2020, 40(10): 35-42.
[6] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[7] Pan-pan ZHANG,Yan-ji XU,Zhi-ke WANG,Xiao LIU,Su-xia LI. High-level Expression and Characterization of Recombinant Porcine Trypsin and Its R122 Site Mutant in Pichia pastoris[J]. China Biotechnology, 2018, 38(5): 56-65.
[8] GAO Hong-tao, GUO Xiao-wei, SUN Dan, XIE Chang-rui, WANG Fa-wei, LI Hai-yan. Extraction of Camelina Seed Oil Body and Analysis of Stability[J]. China Biotechnology, 2017, 37(9): 98-104.
[9] LIU Yan-juan, LI Xu-juan, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Fusing the Acyl Carrier Protein Enhances the Solubility and Thermostability of the Recombinant Proteins in Escherichia coli[J]. China Biotechnology, 2017, 37(7): 115-123.
[10] CHENG Ke-li, LIU Xiao, LI Su-xia. Study on High-level Expression and Characterization of a V125T V8 Protease Mutant with Tolerance to SDS[J]. China Biotechnology, 2017, 37(4): 56-67.
[11] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.
[12] YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation[J]. China Biotechnology, 2016, 36(8): 80-88.
[13] JIAO Yun, KONG Ying-jun, GAO Jian-ping, KANG Ji-yao, SUN Kun, ZHA Sheng-hua, ZHANG Gui-feng, WANG Ming-lin. The Effect of Hydroxylation on the Thermal Stability of Rat Collagen[J]. China Biotechnology, 2015, 35(11): 7-12.
[14] TONG Liang-qin, QU Ya-jun, CHEN Min. Research Advance on Exopolysaccharides Synthesized by Lactic Acid Bacteria[J]. China Biotechnology, 2015, 35(11): 85-91.
[15] ZHANG Wei, WANG Ya-wei, CHEN Feng, ZHOU Ying, XIONG Hai-rong. Gene Synthesis, Expression and Characterization of a Thermostable Endo-β-1, 4-mannanase[J]. China Biotechnology, 2014, 34(8): 41-46.