Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (10): 35-42    DOI: 10.13523/j.cb.2005048
    
Developing the Stability of PD-1 / PD-L1 Immune Checkpoint Antibody Drug Formulation
LIN Jian-hua1,HAN Jun2,*,Xu Han-mei1,*
1 China Pharmaceutical University, Nanjing 211198, China
2 Tasly Biopharmaceuticals Co., Ltd., Shanghai 201203, China
Download: HTML   PDF(6708KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Recently, antibody drugs have developed rapidly in the field of biopharmaceuticals. Clinically, the type and number of monoclonal antibody-based tumor therapies are increasing. With confirmed structure of PD-1/PD-L1 protein,monoclonal antibody drugs against immune checkpoint PD-1/PD-L1 have been continuously developed and applied to the treatment of many principal cancers with high mortality and low cure rate. However, due to the complex physical and chemical properties and serious homogenization, monoclonal antibody drugs are necessary to screen out stable protein preparations for clinical applications based on the characteristics of different monoclonal antibody drugs. This article reviews the role of different antibody drug formulations (buffer components, drug excipients), combined with the PD-L1 target, which introduces the stability development of antibody drug formulations and the main points for evaluation of CDE.



Key wordsImmune checkpoint PD-1/PD-L1      mAb      Formulation      Stability     
Received: 22 May 2020      Published: 10 November 2020
ZTFLH:  R94  
Corresponding Authors: Jun HAN,Han-mei Xu   
Cite this article:

LIN Jian-hua,HAN Jun,Xu Han-mei. Developing the Stability of PD-1 / PD-L1 Immune Checkpoint Antibody Drug Formulation. China Biotechnology, 2020, 40(10): 35-42.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2005048     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I10/35

Fig.1 Structure of Ig and common antibody fragments
类别 影响因素 主要影响方面
制剂工艺 pH 构象稳定性;胶体稳定性
离子强度 构象稳定性;胶体稳定性
辅料 构象稳定性,胶体稳定性;化学降解
包材 构象稳定性;化学降解;聚集/碎片化
生产过程 搅拌 聚集
冻融 聚集
冻干 聚集
表面曝光 聚集;蛋白损失
温度 低温 构象稳定性
高温 化学降解/聚集
光照 可见光/紫外光 化学降解
Table 1 Summary of major stability-influencing factors
序号 商品名 通用名 规格 包装 制剂组成 pH
1 Opdivo(PD-1) Nivolumab 40mg/4ml,
100mg/10ml
西林瓶 每1ml:30mg甘露醇,0.008mg三胺五乙酸,0.2mg聚山梨酯80,2.92mg氯化钠,5.88mg二水枸橼酸钠 6.0
2 Keytruda(PD-1) Pembrolizumab 50mg/瓶
25mg/ml
西林瓶(冻干粉) 3.1mg L-组氨酸,0.4mg聚山梨酯80,140mg蔗糖 5.5
3 Libtayo(PD-1) Cemiplimab 350mg/7ml 西林瓶 每1ml:50mg Cemiplimab,0.74mg L-组氨酸,1.1mg一水合组氨酸盐酸盐,50mg蔗糖,15mg L-脯氨酸,2mg吐温80 6.0
4 Bavencio(PD-L1) Avelumab 200mg/10ml 西林瓶 每1ml:20mg Avelumab,51mg D-甘露醇,0.6mg冰醋酸,0.5mg吐温20,0.3g氯化钠 5.0~5.6
5 Imfinzi(PD-L1) Durvalumab 500mg/10ml
120mg/2.4ml
西林瓶 每1ml:50mg Durvalumab,2mg L-组氨酸,2.7mg一水合组氨酸盐酸盐,104mg二水合海藻糖,0.2mg吐温80 -
6 Tecentriq(PD-L1) Atezolizumab 1 200mg/20ml 西林瓶 每1ml:8mg聚山梨酯20,62mg L-组氨酸,821.6mg蔗糖,16.5mg冰醋酸 5.8
7 拓益(PD-1) 特瑞普利单抗 240mg/6ml 西林瓶 一水合枸橼酸,二水合枸橼酸钠,氯化钠,甘露醇,聚山梨酯80 -
8 达伯舒??(PD-1) 信迪利单抗 100mg/10ml 西林瓶 一水合枸橼酸,二水合枸橼酸钠,氯化钠,甘露醇,组氨酸,依地酸二钠,聚山梨酯80 -
9 艾瑞卡??(PD-1) 卡瑞利珠单抗 200mg/瓶 西林瓶 α,α-二水合海藻糖,冰醋酸,氢氧化钠,聚山梨酯20 -
Table 2 Summary of PD-1/PD-L1 commercial mAb preparation
[1]   Ecker D M, Jones S D, Levine H L. The therapeutic monoclonal antibody market. MAbs, 2015,7(1):9-14.
doi: 10.4161/19420862.2015.989042 pmid: 25529996
[2]   Nelson A L, Dhimolea E, Reichert J M. Development trends for human monoclonal antibody therapeutics. Nature Reviews Drug Discovery, 2010,9(10):767-774.
doi: 10.1038/nrd3229 pmid: 20811384
[3]   Li C, Zhang N, Zhou J, et al. Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy. Cancer Immunology Research, 2017,6(2):178-188.
doi: 10.1158/2326-6066.CIR-17-0035 pmid: 29217732
[4]   Park Y J, Kuen D S, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Molecular Medicine, 2018,50(8):109.
[5]   赵晨曦, 胡卓伟, 崔冰. 单克隆抗体药物研究进展. 药学学报, 2017,52(06):837-47.
[5]   Zhao C X, Hu Z W, Cui B. Recent advances in monoclonal antibody-based therapeutics. Acta Pharmaceutica Sinica, 2017,52(06):837-47.
[6]   邱晓, 罗建辉. 重组单克隆抗体药物制剂处方的作用及相关审评要点. 中国新药杂志. 2019: 1947-1954.
[6]   Qiu X, Luo J H. Roles of the components of product formulation of monoclonal antibodies and the points to consider for drug evaluation. Chinese Journal of New Drugs, 2019: 1947-1954.
[7]   Janeway C A, Capra J D, Travers P, et al. Immunobiology: the immune system in health and disease. Garland Pub, 1999.
[8]   Kennedy P J, Oliveira C, Granja P L, et al. Monoclonal antibodies: technologies for early discovery and engineering. Critical Reviews Biotechnology, 2018,38(3):1-15.
doi: 10.1080/07388551.2017.1311295
[9]   Ellis L M, Hicklin D J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nature Reviews Cancer, 2008,8(8):579-591.
doi: 10.1038/nrc2403 pmid: 18596824
[10]   Alevizakos M, Kaltsas S, Syrigos K N. The VEGF pathway in lung cancer. Cancer Chemotherapy and Pharmacology, 2013,72(6):1169-1181.
doi: 10.1007/s00280-013-2298-3 pmid: 24085262
[11]   Rogers L M, Veeramani S, Weiner G J. Complement in monoclonal antibody therapy of cancer. Immunologic Research, 2014,59(1-3):203-210.
doi: 10.1007/s12026-014-8542-z pmid: 24906530
[12]   Weiner G J. Building better monoclonal antibody-based therapeutics. Nature Reviews Cancer, 2015,15(6):361-370.
doi: 10.1038/nrc3930 pmid: 25998715
[13]   Lee H T, Lee S H, Heo Y S. Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules, 2019,24(6).
pmid: 30917562
[14]   Goodman A, Patel S P, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nature Reviews Clinical Oncology, 2016,14(4):203-220.
doi: 10.1038/nrclinonc.2016.168 pmid: 27805626
[15]   Lehermayr C, Mahler H C, Mader K, et al. Assessment of net charge and protein-protein interactions of different monoclonal antibodies. Journal of Pharmaceutical Sciences, 2011,100(7):2551-2562.
doi: 10.1002/jps.22506 pmid: 21294130
[16]   Schmidt S. Strategies to predict the developability of biopharmaceuticals. American Pharmaceutical Review, 2017,20(6) 122-125.
[17]   Agrawal N J, Dykstra A, Yang J, et al. Prediction of the hydrogen peroxide-induced methionine oxidation propensity in monoclonal antibodies. Journal of Pharmaceutical Sciences, 2018,107(5):1282-1289.
doi: 10.1016/j.xphs.2018.01.002 pmid: 29325924
[18]   Tomar D S, Singh S K, Li L, et al. In silico prediction of diffusion interaction parameter (kD), a key indicator of antibody solution behaviors. Pharmaceutical Research, 2018,35(10):193.
doi: 10.1007/s11095-018-2466-6 pmid: 30128780
[19]   Schmidt A S. Forced degradation studies for biopharmaceuticals. Biopharm International, 2016,29(7):0-0.
[20]   Wang W, Ohtake S. Science and art of protein formulation development. International Journal of Pharmaceutics, 2019.
doi: 10.1016/j.ijpharm.2020.120003 pmid: 33132150
[21]   Maroju R K, Barash S, Brisbane C E. Evaluation of a biologic formulation using customized design of experiment and novel multidimensional robustness diagrams. Journal of Pharmaceutical Sciences, 2017,107(3):797-806.
doi: 10.1016/j.xphs.2017.10.024 pmid: 29107045
[22]   Cui Y, Cui P, Chen B, et al. Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Development and Industrial Pharmacy, 2017,43(4):519-530.
doi: 10.1080/03639045.2017.1278768 pmid: 28049357
[23]   Falconer R J. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnology Advances, 2019,37(7).
doi: 10.1016/j.biotechadv.2019.05.002 pmid: 31075306
[24]   Cirkovas A, Sereikaite J. Different effects of (L)-arginine on the heat-induced unfolding and aggregation of proteins. Biologicals, 2011,39(3):181-188.
doi: 10.1016/j.biologicals.2011.04.003 pmid: 21550265
[25]   Maruno T, Watanabe H, Yoneda S, et al. Sweeping of adsorbed therapeutic protein on prefillable syringes promotes micron aggregate generation. Journal of Pharmaceutical Sciences, 2018,107(6):1521-1529.
doi: 10.1016/j.xphs.2018.01.021 pmid: 29421215
[26]   Hung J J, Dear B J, Dinin A K, et al. Improving viscosity and stability of a highly concentrated monoclonal antibody solution with concentrated proline. Pharmaceutical Research, 2018,35(7):133.
doi: 10.1007/s11095-018-2398-1 pmid: 29713822
[27]   Dion M Z, Leiske D, Sharma V K, et al. Mitigation of oxidation in therapeutic antibody formulations: a biochemical efficacy and safety evaluation of N-acetyl-tryptophan and L-methionine. Pharmaceutical Research, 2018,35(11):222.
doi: 10.1007/s11095-018-2467-5 pmid: 30280329
[28]   Sreedhara A, Lau K, Li C, et al. Role of surface exposed tryptophan as substrate generators for the antibody catalyzed water oxidation pathway. Molecular Pharmaceutics, 2013,10(1):278-288.
doi: 10.1021/mp300418r pmid: 23136850
[29]   Platts L, Falconer R J. Controlling protein stability: mechanisms revealed using formulations of arginine, glycine and guanidinium HCl with three globular proteins. International Journal of Pharmaceutics, 2015,486(1):131-135.
[30]   Estrela N, Franquelim H G, Lopes C, et al. Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure. Proteins, 2015,83(11):2039-2051.
doi: 10.1002/prot.24921 pmid: 26344410
[31]   Das A, Basak P, Pattanayak R, et al. Trehalose induced structural modulation of Bovine Serum Albumin at ambient temperature. International Journal of Biological Macromolecules, 2017,105(1):645-655.
[32]   Reichert D, Gröger S, Hackel C, et al. New insights into the interaction of proteins and disaccharides-the effect of pH and concentration. Biopolymers, 2017,107(2):39-45.
pmid: 27677543
[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[3] MING Yue,ZHAO Zi-tong,WANG Hong-lei,LIANG Zhi-hong. Modification Strategy of Enzyme Thermal Stability Based on Sequence and Structure Analysis[J]. China Biotechnology, 2021, 41(10): 100-108.
[4] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[5] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[6] ZHOU Li-ting,HU Ying-ying,XU Long-chang,LI Yi-jun,SAI Wen-bo,BAI Yu. Discussion on the Quality Similarity Assessment of Bevacizumab Biosimilar[J]. China Biotechnology, 2020, 40(11): 102-109.
[7] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[8] Pan-pan ZHANG,Yan-ji XU,Zhi-ke WANG,Xiao LIU,Su-xia LI. High-level Expression and Characterization of Recombinant Porcine Trypsin and Its R122 Site Mutant in Pichia pastoris[J]. China Biotechnology, 2018, 38(5): 56-65.
[9] GAO Hong-tao, GUO Xiao-wei, SUN Dan, XIE Chang-rui, WANG Fa-wei, LI Hai-yan. Extraction of Camelina Seed Oil Body and Analysis of Stability[J]. China Biotechnology, 2017, 37(9): 98-104.
[10] LIU Yan-juan, LI Xu-juan, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Fusing the Acyl Carrier Protein Enhances the Solubility and Thermostability of the Recombinant Proteins in Escherichia coli[J]. China Biotechnology, 2017, 37(7): 115-123.
[11] CHENG Ke-li, LIU Xiao, LI Su-xia. Study on High-level Expression and Characterization of a V125T V8 Protease Mutant with Tolerance to SDS[J]. China Biotechnology, 2017, 37(4): 56-67.
[12] YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation[J]. China Biotechnology, 2016, 36(8): 80-88.
[13] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.
[14] JIAO Yun, KONG Ying-jun, GAO Jian-ping, KANG Ji-yao, SUN Kun, ZHA Sheng-hua, ZHANG Gui-feng, WANG Ming-lin. The Effect of Hydroxylation on the Thermal Stability of Rat Collagen[J]. China Biotechnology, 2015, 35(11): 7-12.
[15] ZHANG Wei, WANG Ya-wei, CHEN Feng, ZHOU Ying, XIONG Hai-rong. Gene Synthesis, Expression and Characterization of a Thermostable Endo-β-1, 4-mannanase[J]. China Biotechnology, 2014, 34(8): 41-46.