Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (5): 56-65    DOI: 10.13523/j.cb.20180508
    
High-level Expression and Characterization of Recombinant Porcine Trypsin and Its R122 Site Mutant in Pichia pastoris
Pan-pan ZHANG1,Yan-ji XU1,Zhi-ke WANG2,Xiao LIU2,Su-xia LI1,*()
1 East China University of Science and Technology,State Key Laboratory of Bioreactor Engineering,Shanghai 200237,China
2 Shanghai Yaxin Biotehnology Co. Ltd,Shanghai 201108,China
Download: HTML   PDF(1299KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:Study the effect of R122 residue mutation on the stability of recombinant porcine trypsin (RPT).Methods:RPT,mutants mRPT(R122H) and mRPT(R122H/R73G/R130) were expressed in Pichia pastoris GS115 and further purified. The properties and stabilities of RPT and two mutants was investigated and compared.Results:RPT and its mutants were highly expressed in Pichia pastoris. Relative to RPT, mutant mRPT (R122H) and mRPT (R122H/R73G/R130T) showed higher affinity to substrate BAEE, The Km values were 18.8μmol/L, 9.0μmol/L and 11.0μmol/L, respectively. Increased stability of mutants to high temperature and alkali were observed. And higher resistance against autolysis were got in the presence and without Ca 2+. Conclusion:Pichia pastoris can be used to efficiently express RPT and its mutants.Increased stability under alkaline condition and higher thermal stability and higher anti-self-digestion were got in mutant mRPT (R122H) and mRPT (R122H/R73G/R130T) compared to wild-type RPT, which contribute to the site mutation at the R122.



Key wordsRecombinant porcine trypsin      Pichia pastoris      Mutation      mRPT(R122H)      mRPT(R122H/R73G/R130T)      Property      Stability     
Received: 11 January 2018      Published: 05 June 2018
ZTFLH:  Q786  
Corresponding Authors: Su-xia LI     E-mail: lisuxia@ecust.edu.cn
Cite this article:

Pan-pan ZHANG,Yan-ji XU,Zhi-ke WANG,Xiao LIU,Su-xia LI. High-level Expression and Characterization of Recombinant Porcine Trypsin and Its R122 Site Mutant in Pichia pastoris. China Biotechnology, 2018, 38(5): 56-65.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180508     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I5/56

Fig.1 Three dimentional structure of porcine trypsin 3D surface structure model of trypsin (left),and the mutation sites (R73,R122,R130) are marked as red.PT and RT 3D cartoon model comparison(right),and the mutation sites (R73,R122,R130) of RPT are marked as black.The 3D structure of trypsin was obtained from the Protein Data Bank (PDB) and The 3D structure of trypsin was obtained using PyMol Version 0.99
Fig.2 Electrophoresis of traget fragment identified by PCR M:DNA mark; 1: Negative control(pPIC-9K-RPT); 2: pPIC-9K-RPT linearized by SacⅠ; 3: pPIC-9K-mRPT(R122H) linearized by SacⅠ; 4: pPIC-9K-RPT linearized by Sac
Fig.3 SDS-PAGE analysis of expression of recombinant RPT and mutants and the activation of the recombinant trypsinogen M:Protein marker; 1: Recombinant porcine trypsinogen; 2, 3: Mutants mRPT(R122H) and mRPT(R122H/R73G/R130T)
Fig. 4 The records of fermentation and the SDS-PAGE analysis of the expression of mRPT(R122H) (a) Time course profile of mRPT(R122H) in an 10L fermenter (b) The trend chart of OD600 during the fermenter (c) The SDS-PAGE analysis of the express of mRPT(R122H) M: Protein mark; 1-7: Samples were induced 12h,16.5h,24h,28.7h,33h,37.5h,48h respectively
Fig.5 The purification of mRPT(R122H) (a) The SDS-PAGE analysis of mRPT(R122H) by CM-FF chromatography 1:The loading sample; M:Protein mark; 2:The flow out part; 3:Balance part; 4-14:Eluting parts (b) The SDS-PAGE analysis of mRPT(R122H) by Hitrap benzamidine chromatography M:Protein mark; 1~6:Eluting parts (c) Elution curve
Fig.6 Determination of Km of RPT and mutants
Km(μmol/L) Kcat(min-1) Kcat/Km[min-1/(μmol/L)] Vmax[μmol/(ml·min)]
RPT 18.8 7 027.3 373.8 1 712.3
mRPT(R122H) 9.0 6 492.9 721.4 1 318.4
mRPT(R122H/R73G/R130T) 11.0 7 008.5 637.1 1 423.1
Table 1 Kinetic parameters of RPT and mutants mRPT(R122H)、 mRPT(R122H/R73G/R130T)
Fig.7 Optimal pH (a) and Effect of pH on the stability (b) of RPT and mutants
Fig.8 Optimal temperature ofRPT(a), mRPT(R122H)(b) and mRPT(R122H/R73G/R130T)(c)
Fig.9 Thermal stability of RPT(a), mRPT(R122H)(b) and mRPT(R122H/R73G/R130T)(c)
Fig.10 Time course of the decrease of activity of RPT and mutants in the presence of 20mmol/L Ca2+ (a) and 1mmol/L EDTA (b)
Fig.11 RP-HPLC analysis on self-digestion of RPT and mutants at pH 8.0, 1mmol/L EDTA,25℃ (a), (b)RPT incubated for 0h and 1h (c),(d) mRPT(R122H) incubated for 0h and 1h (e) and (f) mRPT(R122H/R73G/R130T) incubated for 0h and 1h
[1]   Olafson R W, Jurasek L, Carpenter M R , et al. Amino acid sequence of Streptomyces griseus trypsin. cyanogen bromide fragments and complete sequence. Biochemistry. 1975,14(6):1168-1177.
doi: 10.1021/bi00677a011 pmid: 804314
[2]   Lombardi J, Valetti N W, Picó G , et al. Obtainment of a highly concentrated pancreatic serine proteases extract from bovine pancreas by precipitation with polyacrylate. Separation & Purification Technology, 2013,116(37):170-174.
doi: 10.1016/j.seppur.2013.05.047
[3]   Zhang Y, Ling Z, Du G , et al. Improved production of active Streptomyces griseus trypsin with a novel auto-catalyzed strategy. Sci Rep, 2016,6:23158.
doi: 10.1038/srep23158 pmid: 26983398
[4]   杜坤, 甘一如, 黄鹤 . 活性位点邻近的Ω-loop对胰蛋白酶热稳定性和活性的影响. 高校化学工程学报, 2017,31(3):657-662.
[4]   Du K, Gan Y R, Huang H . Effects of near active sites on the stability and activity of trypsin. Journal of Chemical Engineering of Chinese Universities, 2017,31(3):657-662.
[5]   Cao Y, Wen L, Svec F , et al. Magnetic AuNP@Fe3O4, nanoparticles as reusable carriers for reversible enzyme immobilization. Chemical Engineering Journal, 2016,286(15):272-281.
doi: 10.1016/j.cej.2015.10.075
[6]   Liu Y, Zhang W, Yang X , et al. DsbA-DsbAmut fusion chaperon improved soluble expression of human trypsinogen-1 in Escherichia coli. Frontiers of Chemical Science & Engineering, 2015,9(4):511-521.
doi: 10.1007/s11705-015-1519-1
[7]   Shu M, Shen W, Wang X , et al. Expression, activation and characterization of porcine trypsin in Pichia pastoris GS115. Protein Expression & Purification, 2015,114(16):149-155.
doi: 10.1016/j.pep.2015.06.014 pmid: 26118809
[8]   Olsen J V, Ong S E, Mann M . Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics, 2004,3(6):608-614.
doi: 10.1074/mcp.T400003-MCP200 pmid: 15034119
[9]   Maroux S, Desnuelle P . On some autolyzed derivatives of bovine trypsin. Biochimica Et Biophysica Acta, 1969,181(1):59-72.
doi: 10.1016/0005-2795(69)90227-X pmid: 5815587
[10]   Raphael K L, Willingham F F . Hereditary pancreatitis: current perspectives. Clinical & Experimental Gastroenterology, 2016,9(Issue 1):197-207.
[11]   Whitcomb D C, Gorry M C, Preston R A , et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nature Genetics, 1996,14(2):141-145.
doi: 10.1038/ng1096-141
[12]   马强, 吴倩, 李素霞 . R122L突变提高重组人阴离子型胰蛋白酶的稳定性的研究. 中国生化药物杂志, 2014,34(2):61-64,67.
[12]   Ma Q, Wu Q, Li S X . The research of site R 122 L mutate improve the stability of recombinant human anionic trypsin. Chinese Journal of Biochemical and Pharmaceutics, 2014,34(2):61-64,67.
[13]   Várallyay E, Pál G, Patthy A , et al. Two mutations in rat trypsin confer resistance against autolysis. Biochemical & Biophysical Research Communications, 1998,243(1):56-60.
[14]   张震阳, 杨艳坤, 战春君 , 等. Pichia pastoris X-33 △GT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达. 中国生物工程杂志, 2017,37(1):38-45.
[14]   Zhang Z Y, Yang Y K, Zhan C J , et al. Pichia pastoris X-33 ΔGT2 release the glycerol repression on AOX1and Ef-ficiently express heterologous proteins. China Biotechnology, 2017,37(1):38-45.
[15]   王琨 . 南极磷虾胰蛋白酶的分离纯化及酶学性质研究. 大连:大连理工大学, 2013.
[15]   Wang K . Purification and characterization of the trypsin from Euphausia superba. Dalian:Dalian University of Technology, 2013.
[16]   Huang Q, Wang Z, Li Y , et al. Refined 1.8A resolution crystal structure of the porcine epsilon-trypsin. Biochimica Et Biophysica Acta, 1994,1209(1):77-82.
doi: 10.1016/0167-4838(94)90139-2
[17]   Syedibrahim B, Shamaladevi N, Vasantha P . Trypsin activity reduced by an autocatalytically produced nonapeptide. Journal of Biomolecular Structure & Dynamics, 2004,21(6):737-744.
doi: 10.1080/07391102.2004.10506964 pmid: 15106996
[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[3] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[4] MING Yue,ZHAO Zi-tong,WANG Hong-lei,LIANG Zhi-hong. Modification Strategy of Enzyme Thermal Stability Based on Sequence and Structure Analysis[J]. China Biotechnology, 2021, 41(10): 100-108.
[5] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[6] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[7] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[8] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[9] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[10] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[11] LIN Jian-hua,HAN Jun,Xu Han-mei. Developing the Stability of PD-1 / PD-L1 Immune Checkpoint Antibody Drug Formulation[J]. China Biotechnology, 2020, 40(10): 35-42.
[12] WANG Qian,CHEN Su-ning. The Genetics of Mixed-phenotype Acute Leukemia[J]. China Biotechnology, 2019, 39(9): 91-97.
[13] YANG Lin,WANG Liu-yue,LI Hui-mei,CHEN Hua-bo. Multi-site Specific Mutagenesis by Multi-fragment Overlap Extension PCR[J]. China Biotechnology, 2019, 39(8): 52-58.
[14] Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI. Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control[J]. China Biotechnology, 2019, 39(6): 32-40.
[15] WANG Zhao-guan,WU Yang,QI Hao. Research Progress in Synthetic Diverse Mutant Libraries[J]. China Biotechnology, 2019, 39(11): 113-122.