Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (7): 91-99    DOI: 10.13523/j.cb.2002025
综述     
微生物异源合成咖啡酸及其酯类衍生物研究进展 *
王震,李霞(),元英进
天津大学化工学院 教育部合成生物学前沿科学中心 系统生物工程教育部重点实验室 天津 300072
Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes
WANG Zhen,LI Xia(),YUAN Ying-jin
Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
 全文: PDF(856 KB)   HTML
摘要:

咖啡酸及其酯类衍生物如绿原酸、迷迭香酸和咖啡酸苯乙酯等具有天然抗氧化、抗肿瘤、抗病毒和抗炎等重要的药理活性,具有广阔的药用开发前景。从天然药物中提取或者化学合成咖啡酸及其酯类衍生物,存在含量低、提取效率不高、催化成本高昂以及环境污染等问题。随着咖啡酸及其酯类衍生物合成途径解析和合成生物学的快速发展,微生物异源合成咖啡酸及其酯类衍生物的研究已逐渐展开。对微生物异源合成咖啡酸及其酯类衍生物合成途径的最新进展以及代谢工程策略进行了综述,并讨论了目前存在的问题和未来的发展趋势。

关键词: 咖啡酸咖啡酸酯类衍生物合成生物学    
Abstract:

Caffeic acid and its ester derivatives like chlorogenic acid, rosmarinic acid, and caffeic acid phenethyl ester have important pharmacological activities such as natural antioxidant, antitumor, antiviral, and anti-inflammatory, and have broad prospects for medical development. Traditional extraction and chemical synthesis of caffeic acid and its derivatives from plants exist some problems such as low content, low extraction efficiency, high catalytic cost, and environmental pollution. In recent years, the study of heterologous synthesis of caffeic acid and its ester derivatives by microbes has been gradually carried out with the rapid development of synthetic biology.The recent advances in the biosynthetic pathway elucidations of caffeic acid and its ester derivatives and metabolic engineering strategies in heterologous microbes were summarized, and the current status as well as future perspectives were discussed.

Key words: Caffeic acid    Caffeic acid ester derivatives    Synthetic biology
收稿日期: 2020-02-18 出版日期: 2020-08-13
ZTFLH:  Q815  
基金资助: * 国家自然科学基金资助项目(81502976)
通讯作者: 李霞     E-mail: lixia01@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王震
李霞
元英进

引用本文:

王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.

WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes. China Biotechnology, 2020, 40(7): 91-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2002025        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I7/91

图1  咖啡酸及其常见酯类衍生物化学结构
图2  异源生物合成路径
Product Precursor Carbon source Heterologous
enzymes
Source Titer Host Ref.
Caffeic acid p-coumaric acid Glycerol CYP199A2
pdR
pux
R. palustris
P. putida
R. palustris
2.8g/L E.coli [17]
p-coumaric acid Glycerol hpaBC P.aeruginosa PAO1 10.2g/L E.coli [19]
Tyrosine Glucose TAL
hpaB
hpaC
R. toruloides
P. aeruginosa
S. enterica
289mg/L S. cerevisiae [20]
No added Glucose+
Glycerol
TAL
hpaBC
R. capsulatus
E. coli MG1655
50.2mg/L E.coli [5]
No added Cellulose from
Kraft pulp
fevV
hpaBC
Streptomyces sp.
WK-5344
P.aeruginosa PAO1
233mg/L E.coli [16]
Rosmarinic acid No added Glucose HdhA
hpaBC
TAL
4CL
RAS
L. delbrueckii
E. coli
R. sphaeroides
A. thaliana
M. officinalis
1.8μmol/L E.coli [7]
Caffeic acid Glucose LDH
hpaBC
4CL
RAS
L. pentosus
E. coli
A.thaliana
Coleus blumei
130mg/L E.coli [8]
Chlorogenic acid Caffeic acid Glucose 4CL
HQT
ydiB
O. sativa
N. tobacco
E. coli
450mg/L E.coli [10]
No added Glucose TAL
hpaBC
4CL
HQT
ydiB
S.espanaensis
E. coli
O. sativa
N. tobacco
E. coli
78mg/L E.coli [11]
Caffeic acid
phenethyl esters
No added Glucose TAL
hpaBC
4CL
KDC
ADH
O-ATF
R. glutinis
E. coli
A. thaliana
Lactococcus lactis
S. cerevisiae
S. cerevisiae
60mg/L E.coli [13]
表1  微生物异源合成咖啡酸及其酯类衍生物
图3  莽草酸途径代谢调控
[1] Espíndola K M M, Ferreira R G, Lem N, et al. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Frontiers in Oncology, 2019,9:541.
doi: 10.3389/fonc.2019.00541 pmid: 31293975
[2] Cunha F M D, Duma D, Assreuy J, et al. Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties. Free Radical Research, 2004,38(11):1241-1253.
doi: 10.1080/10715760400016139 pmid: 15621702
[3] Magnani C, Isaac V L B, Correa M A, et al. Caffeic acid: a review of its potential use in medications and cosmetics. Analytical Methods, 2014,6(10):3203-3210.
doi: 10.1039/c3ay41807c
[4] Zhang P, Tang Y, Li N G, et al. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules, 2014,19(10):16458-16476.
doi: 10.3390/molecules191016458 pmid: 25314606
[5] Davy A M, Kildegaard H F, Anderson M R, et al. Cell factory engineering. Cell System, 2017,4(3):262-257.
doi: 10.1016/j.cels.2017.02.010
[6] Zhang X, Liu C J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Molecular Plant, 2015,8(1):17-27.
doi: 10.1016/j.molp.2014.11.001 pmid: 25578269
[7] Kim Y H, Kwon T W, Yang H J, et al. Gene engineering, purification, crystallization and preliminary x-ray diffraction of cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis membrane protein. Protein Expression and Purification, 2011,79(1):149-155.
doi: 10.1016/j.pep.2011.04.013
[8] Berner M, Krug D, Bihlmaier C, et al. Genes and enzymes involved in caffeic acid biosynthesis in the Actinomycete Saccharothrix espanaensis. Journal of Bacteriology, 2006,188(7):2666-2673.
doi: 10.1128/JB.188.7.2666-2673.2006 pmid: 16547054
[9] Lin Y, Yan Y. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microbial Cell Factories, 2012,11(1):42.
doi: 10.1186/1475-2859-11-42
[10] Maurya D K, Devasagayam T P A. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food and Chemical Toxicology, 2010,48(12):3369-3373.
doi: 10.1016/j.fct.2010.09.006 pmid: 20837085
[11] Kim G D, Park Y S, Jin Y H, et al. Production and applications of rosmarinic acid and structurally related compounds. Applied Microbiology and Biotechnology, 2015,99(5):2083-2092.
doi: 10.1007/s00253-015-6395-6 pmid: 25620368
[12] Petersen M. Rosmarinic acid: new aspects. Phytochemistry Reviews, 2013,12(1):207-227.
doi: 10.1007/s11101-013-9282-8
[13] Bloch S E, Schmidt-Dannert C. Construction of a chimeric biosynthetic pathway for the De Novo biosynthesis of rosmarinic acid in Escherichia coli. Biochemistry, 2014,15(16):2393-2401.
[14] Zhuang Y, Jiang J, Bi H, et al. Synthesis of rosmarinic acid analogues in Escherichia coli. Biotechnology Letters, 2016,38(4):619-627.
doi: 10.1007/s10529-015-2011-1 pmid: 26667131
[15] Naveed M, Hejazi V, Abbas M, et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine and Pharmacotherapy, 2018,97:67-74.
doi: 10.1016/j.biopha.2017.10.064 pmid: 29080460
[16] Kim B G, Jung W D, Mok H, et al. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: Production of hydroxycinnamic acid conjugates. Microbial Cell Factories, 2013,12(1):15.
doi: 10.1186/1475-2859-12-15
[17] Armutcu F, Akyol S, Ustunsoy S, et al. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (review). Experimental and Therapeutic Medicine, 2015,9(5):1582-1588
doi: 10.3892/etm.2015.2346 pmid: 26136862
[18] Wang J, Mahajani M, Jackson S L, et al. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides. Metabolic Engineering, 2017,44:89-99.
doi: 10.1016/j.ymben.2017.09.011 pmid: 28943460
[19] Wang Y, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms. Applied Microbiology and Biotechnology, 2011,91(4):949-956.
doi: 10.1007/s00253-011-3449-2 pmid: 21732240
[20] Cheon S, Kim H M, Gustavsson M, et al. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Current Opinion in Chemical Biology, 2016,35:10-21.
doi: 10.1016/j.cbpa.2016.08.003 pmid: 27552559
[21] Zhang Y, Hess H. Toward rational design of high-efficiency enzyme cascade. ACS Catalysis, 2017,2017(7):6018-6027.
[22] Jendresen C B, Stahlhut S G, Li M, et al. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2015,81(13):4458-4476.
doi: 10.1128/AEM.00405-15 pmid: 25911487
[23] Kawaguchi H, Katsuyama Y, Danyao D, et al. Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2017,101(13):5279-5290.
doi: 10.1007/s00253-017-8270-0 pmid: 28396925
[24] Furuya T, Arai Y, Kino K. Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2. Applied and Environmental Microbiology, 2012,78(17):6087-6094.
doi: 10.1128/AEM.01103-12 pmid: 22729547
[25] Galán B, Díaz E, Prieto M A, et al. Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new Flavin:NAD(P)H reductase subfamily. Journal of Bacteriology, 2000,182(3):627-636.
doi: 10.1128/jb.182.3.627-636.2000 pmid: 10633095
[26] Furuya T, Kino K. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives. Applied Microbiology and Biotechnology, 2014,98(3):1145-1154.
doi: 10.1007/s00253-013-4958-y
[27] Liu L, Liu H, Zhang W, et al. Engineering the biosynthesis of caffeic acid in Saccharomyces cerevisiae with heterologous enzyme combinations. Engineering, 2019,5(2):287-295.
doi: 10.1016/j.eng.2018.11.029
[28] Berger A, Petersen M M. Rosmarinic acid synthase is a new member of the superfamily of BAHD acyltransferases. Planta, 2006,224(6):1503-1510.
doi: 10.1007/s00425-006-0393-y
[29] Eudes A, Mouille M, Robinson D S, et al. Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast. Microbial Cell Factories, 2016,15(1):198.
doi: 10.1186/s12934-016-0593-5 pmid: 27871334
[30] Biggs B W, De Paepe B, Santos C N S, et al. Multivariate modular metabolic engineering for pathway and strain optimization. Current Opinion in Biotechnology, 2014,29:156-162.
doi: 10.1016/j.copbio.2014.05.005
[31] Jossek R, Bongaerts J, Sprenger G A. Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli. FEMS Microbiology Letters, 2001,202(1):145-148.
pmid: 11506923
[32] 姚元锋, 赵广荣. L-酪氨酸代谢工程研究进展. 食品与发酵工业, 2013,(5):136-141.
Yao Y F, Zhao G R. Advances on metabolic engineering of L-tyrosine. Food and Fermentation Industries, 2013,(5):136-141.
[33] Kang S Y, Choi O, Lee J, et al. Artificial biosynthesis of phenylpropanoic acids in a tyrosine over-producing Escherichia coli strain. Microbial Cell Factories, 2012,11(1):153.
[34] Rodrigues J L, Araújo R G, Prather K L J, et al. Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzyme and Microbial Technology, 2015,71:36-44.
doi: 10.1016/j.enzmictec.2015.01.001 pmid: 25765308
[35] Huang J, Lin Y, Yuan Q, et al. Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli. Journal of Industrial Microbiology & Biotechnology, 2015,42(4):655-659.
doi: 10.1007/s10295-015-1591-z pmid: 25645094
[36] 王钦, 曾伟主, 周景文. 大肠杆菌酪氨酸转运系统基因敲除对酪氨酸生产的影响. 生物工程学报, 2019,35(7):1247-1255.
doi: 10.13345/j.cjb.180533 pmid: 31328481
Wang Q, Zeng W Z, Zhou J W, et al. Effect of gene knockout of L-tyrosine transport system on L-tyrosine production in Escherichia coli. Chinese Journal of Biotechnology, 2019,35(7):1247-1255.
doi: 10.13345/j.cjb.180533 pmid: 31328481
[37] Liu Q L, Yu T, Li X W, et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nature Communication, 2019,10(1):1-13.
[38] Goers L, Freemont P, Polizzi K M. Co-culture systems and technologies: taking synthetic biology to the next level. Journal of The Royal Society Interface, 2014,11(96):65.
[39] Zhang W, Liu H, Li X, et al. Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae. Engineering in Life Sciences, 2017,17(9):1021-1029.
[40] Li Z H, Wang X N, Zhang H R. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering, Metabolic Engineering, 2019,54:1-11.
doi: 10.1016/j.ymben.2019.03.002 pmid: 30844431
[41] Cha M N, Kim H J, Kim B G, et al. Synthesis of chlorogenic acid and p-coumaroyl shikimates from glucose using engineered Escherichia coli. Journal of Microbiology and Biotechnology, 2014,24(8):1109-1117.
doi: 10.4014/jmb.1403.03033 pmid: 24786529
[42] Ahn J O, Lee H W, Saha R, et al. Exploring the effects of carbon sources on metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions. Journal of Microbiology and Biotechnology, 2008,18(11):1773-1784.
pmid: 19047820
[43] Huang Q, Lin Y, Yan Y, et al. Caffeic acid production enhancement by engineering a phenylalanine over-producing. Biotechnology and Bioengineering, 2013,110(12):3188-3196.
doi: 10.1002/bit.24988 pmid: 23801069
[44] Annaluru N, Muller H, Mitchell L A, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014,344(6179):55-58.
doi: 10.1126/science.1249252 pmid: 24674868
[45] Richardson S M, Mitchell L A, Stracquadanio G, et al. Design of a synthetic yeast genome. Science, 2017,355(6329):1040-1044.
doi: 10.1126/science.aaf4557 pmid: 28280199
[46] Xie Z X, Li B Z, Mitchell L A, et al. Perfect designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): eaaf4704.
doi: 10.1126/science.abd3902 pmid: 32764055
[47] Wu Y, Li B Z, Zhao M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355(6329): eaaf4706.
doi: 10.1126/science.abd3902 pmid: 32764055
[48] Shen M J, Wu Y, Yang K, et al. Heterozygous diploid and interspecies SCRaMbLEing. Nature Communications, 2018,9(1):1934.
doi: 10.1038/s41467-018-04157-0 pmid: 29789590
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[6] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[7] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[8] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[9] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[10] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[11] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[12] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[13] 谢华玲,李东巧,迟培娟,杨艳萍. 合成生物学领域专利竞争态势分析[J]. 中国生物工程杂志, 2019, 39(4): 114-123.
[14] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[15] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.