Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (8): 84-91    DOI: 10.13523/j.cb.20180811
综述     
甜菜素的生物合成及其代谢调控进展 *
于思礼1,刘雪1,张昭宇1,於洪建2,赵广荣1,**()
1. 天津大学化工学院制药工程系 系统生物工程教育部重点实验室 天津 300350
2. 天津益倍生物科技集团 天津 300450
Advances of Betalains Biosynthesis and Metabolic Regulation
Si-li YU1,Xue LIU1,Zhao-yu ZHANG1,Hong-jian YU2,Guang-rong ZHAO1,**()
1. Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300350, China
2. Ubasio Biotech Co., Ltd., Tianjin 300450, China
 全文: PDF(673 KB)   HTML
摘要:

甜菜素是一种植物源的水溶性天然含氮色素,用于食品添加剂和化妆品等行业中。在植物中甜菜素和花青素色素互不共存,其代谢途径是重要的植物化学分类指标。甜菜素兼具抗氧化、抗肿瘤、抗疟、保肝等药理作用,其潜在的医疗保健价值以及其代谢途径的独特性,促进了对甜菜素深入研究。综述了甜菜素合成途径中的关键酶和合成生物学策略生产甜菜素的国内外研究进展,为建立合成生物方法生产甜菜素提供参考。

关键词: 甜菜素生物合成合成生物学代谢工程甜菜红苷甜菜黄素    
Abstract:

Betalains is a kind of botanical water-soluble natural nitrogen-containing pigments, which used as food additives and cosmetics. Betalains and anthocyanin pigments do not coexist in a same plant, and their metabolic pathway is an important phytochemical classification index. Betalains have potential pharmacological effects of anti-tumor, anti-oxidation, anti-malaria and liver protective, which have promoted the further study of them. The key enzymes of betalains synthesis pathway and research progress of synthetic biology strategy for betalains production at home and abroad are reviewed. It provides a reference for establishing synthetic biological method of betalains production.

Key words: Betalains biosynthesis    Synthetic biology    Metabolic engineering    Betanin    Betaxanthin
收稿日期: 2018-04-08 出版日期: 2018-09-11
ZTFLH:  Q946  
基金资助: 国家自然科学基金(31570087)
通讯作者: 赵广荣     E-mail: grzhao@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
于思礼
刘雪
张昭宇
於洪建
赵广荣

引用本文:

于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.

Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation. China Biotechnology, 2018, 38(8): 84-91.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180811        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I8/84

图1  甜菜素的生物合成途径
分类 结构 R基团 色素名称 植物来源
甜菜红素 R = H 甜菜红苷配基 甜菜
R = Glc 甜菜红苷 甜菜
R = H 2-脱羧甜菜红苷 甜菜
R = Malonyl 6'-O-丙二酰-2-脱羧甜菜红苷 甜菜
R = ρ-Coumaroyl 松叶菊红苷Ⅰ 松叶菊
R = Feruloyl 松叶菊红苷Ⅱ 松叶菊
R = H 叶子花紫色苷Ⅰ 叶子花
R = ρ-Coumaroyl 叶子花紫色苷Ⅲ 叶子花
R = H 苋菜红素 尾穗苋
R = ρ-Coumaroyl 鸡冠花红素Ⅰ 鸡冠花
R = Feruloyl 鸡冠花红素Ⅱ 鸡冠花
R = H 千日红素Ⅰ 千日红
R = ρ-Coumaroyl 千日红素Ⅱ 千日红
R = Feruloyl 千日红素Ⅲ 千日红
R = Sinapoyl 千日红素Ⅳ 千日红
甜菜黄素 R = Aspartic acid 天冬氨酸-甜菜黄素 紫茉莉
R = Tyramine 酪胺-甜菜黄素 紫茉莉
R = Dopamine 多巴胺-甜菜黄素 紫茉莉
R = Histamine 组胺-甜菜黄素 紫茉莉
R = Tyrosine 酪氨酸-甜菜黄素 大花马齿苋
R = Glycine 甘氨酸-甜菜黄素 大花马齿苋
R = Proline 脯氨酸-甜菜黄素 黎果仙人掌
R = Hydroxyproline 羟脯氨酸-甜菜黄素 黎果仙人掌
表1  常见甜菜素及其来源
植物宿主及培养方式 引入基因及来源 产物及含量(mg/g鲜重) 参考文献
烟草,细胞悬浮培养 TYR(香菇)
DODA(紫茉莉)
甜菜黄素1.02 [38]
烟草,细胞悬浮培养 CYP76AD1(甜菜)
DODA(甜菜)
cDOPA5GT(紫茉莉)
甜菜红苷0.05 [35]
烟草,细胞悬浮培养 CYP76AD6(甜菜)
DODA(甜菜)
甜菜黄素0.1 [35]
烟草,愈伤组织培养 CYP76AD1(甜菜)
DODA(甜菜)
cDOPA5GT(紫茉莉)
甜菜红苷0.33 [35]
茄子,愈伤组织培养 CYP76AD1(甜菜)
DODA(甜菜)
cDOPA5GT(紫茉莉)
甜菜红苷0.25 [35]
番茄,愈伤组织培养 CYP76AD1(甜菜)
DODA(甜菜)
cDOPA5GT(紫茉莉)
甜菜红苷0.12 [35]
马铃薯,愈伤组织培养 CYP76AD1(甜菜)
DODA(甜菜)
cDOPA5GT(紫茉莉)
甜菜红苷0.07 [35]
表2  非石竹目植物合成甜菜素
[1] Khan M I, Giridhar P . Plant betalains: chemistry and biochemistry. Phytochemistry, 2015,117(1):267-295.
doi: 10.1016/j.phytochem.2015.06.008 pmid: 26101148
[2] Ninfali P, Antonini E, Frati A , et al. C-Glycosyl flavonoids from Beta vulgaris Cicla and betalains from Beta vulgaris rubra: antioxidant, anticancer and antiinflammatory activities-a review. Phytotherapy Research: PTR, 2017,31(6):871-884.
doi: 10.1002/ptr.5819
[3] Stafford H A . Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Science, 1994,101(2):91-98.
doi: 10.1016/0168-9452(94)90244-5
[4] Steiner U, Schliemann W, Böhm H , et al. Tyrosinase involved in betalain biosynthesis of higher plants. Planta, 1999,208(1):114-124.
doi: 10.1007/s004250050541
[5] Gandia-Herrero F, Garcia-Carmona F, Escribano J . Purification and characterization of a latent polyphenol oxidase from beet root (Beta vulgaris L.). Journal of Agricultural and Food Chemistry, 2004,52(3):609-615.
doi: 10.1021/jf034381m
[6] Gao Z J, Han X H, Xiao X G . Purification and characterisation of polyphenol oxidase from red Swiss chard (Beta vulgaris subspecies cicla) leaves. Food Chemistry, 2009,117(2):342-348.
doi: 10.1016/j.foodchem.2009.04.013
[7] Wang C Q, Song H, Gong X Z , et al. Correlation of tyrosinase activity and betacyanin biosynthesis induced by dark in C3 halophyte Suaeda salsa seedlings. Plant Science, 2007,173(5):487-494.
doi: 10.1016/j.plantsci.2007.07.010
[8] Mueller L A, Hinz U, Zrÿd J P . Characterization of a tyrosinase from Amanita muscaria involved in betalain biosynthesis . Phytochemistry, 1996,42(6):1511-1515.
doi: 10.1016/0031-9422(96)00171-9
[9] 陈天舒, 修妍伟, 王琼 , 等. 盐生植物盐地碱蓬酪氨酸酶的酶学特性. 植物生理学报, 2011,47(10):1017-1023.
Chen T S, Xiu Y W, Wang Q , et al. Enzymatic characteristics of tyrosinase in euhalophyte Suaeda salsa. Plant Physiology Journal, 2011,47(10):1017-1023.
[10] Jiratanan T, Liu R H . Antioxidant activity of processed table beets (Beta vulgaris var. conditiva) and green beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 2004,52(9):2659-2670.
doi: 10.1021/jf034861d
[11] Teng X L, Chen N, Xiao X G . Identification of a catalase-phenol oxidase in betalain biosynthesis in red amaranth (Amaranthus cruentus). Frontiers in Plant Science, 2016,6(1):1228-1243.
[12] Lipscomb J D . Mechanism of extradiol aromatic ring-cleaving dioxygenases. Current Opinion in Structural Biology, 2008,18(6):644-649.
doi: 10.1016/j.sbi.2008.11.001 pmid: 2614828
[13] Christinet L . Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiology, 2004,134(1):265-274.
doi: 10.1104/pp.103.031914
[14] Tanaka Y, Sasaki N, Ohmiya A . Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 2008,54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x pmid: 18476875
[15] Sasaki N, Abe Y, Goda Y , et al. Detection of DOPA 4,5-dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant and Cell Phisiology, 2009,50(5):1012-1016.
doi: 10.1093/pcp/pcp053
[16] Gandia-Herrero F, Garcia-Carmona F . Characterization of recombinant Beta vulgaris 4,5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains. Planta, 2012,236(1):91-100.
doi: 10.1007/s00425-012-1593-2
[17] Chung H H, Schwinn K E, Ngo H M , et al. Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain-producing species. Frontiers in Plant Science, 2015,6(1):499-514.
[18] Gandia-Herrero F, Garcia-Carmona F . Escherichia coli protein YgiD produces the structural unit of plant pigments betalains: characterization of a prokaryotic enzyme with DOPA-extradiol-dioxygenase activity. Applied Microbiology and Biotechnology, 2014,98(3):1165-1174.
doi: 10.1007/s00253-013-4961-3
[19] Li J, Christensen B M . Identification of products and intermediates during L-Dopa oxidation to dopachrome using high pressure liquid chromatography with electrochemical detection. Journal of Liquid Chromatography, 1993,16(5):1117-1133.
doi: 10.1080/10826079308019575
[20] Riley P A . Tyrosinase kinetics: a semi-quantitative model of the mechanism of oxidation of monohydric and dihydric phenolic substrates. Journal of Theoretical Biology, 2000,203(1):1-12.
doi: 10.1006/jtbi.1999.1061
[21] Schliemann W, Steiner U, Strack D . Betanidin formation from dihydroxyphenylalanine in a model assay system. Phytochemistry, 1998,49(6):1593-1598.
doi: 10.1016/S0031-9422(98)00276-3 pmid: 11711071
[22] Hatlestad G J, Sunnadeniya R M, Akhavan N A , et al. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nature Genetics, 2012,44(7):816-820.
doi: 10.1038/ng.2297 pmid: 22660548
[23] Sunnadeniya R, Bean A, Brown M , et al. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets (Beta vulgaris). PloS One, 2016,11(2):e0149417.
doi: 10.1371/journal.pone.0149417
[24] Land E J, Riley P A . Spontaneous redox reactions of dopaquinone and the balance between the eumelanic and phaeomelanic pathways. Pigment Cell Research, 2000,13(4):273-277.
doi: 10.1034/j.1600-0749.2000.130409.x
[25] Kishima Y, Suiko M, Adachi T . Betalain pigmentation in petal of Portulaca is preceded by a dramatic tyrosine accumulation. Journal of Plant Physiology, 1991,137(4):505-506.
doi: 10.1016/S0176-1617(11)80325-1
[26] Toivonen P M A, Brummell D A . Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 2008,48(1):1-14.
doi: 10.1016/j.postharvbio.2007.09.004
[27] Gandia-Herrero F, Escribano J, Garcia-Carmona F . Betaxanthins as substrates for tyrosinase. an approach to the role of tyrosinase in the biosynthetic pathway of betalains. Plant Physiology, 2005,138(1):421-432.
doi: 10.1104/pp.104.057992
[28] Das S S, Gauri S S, Misra B B , et al. Purification and characterization of a betanidin glucosyltransferase from Amaranthus tricolor L catalyzing non-specific biotransformation of flavonoids. Plant Science, 2013,211(3):61-69.
doi: 10.1016/j.plantsci.2013.07.003
[29] Vogt T . Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis. Planta, 2002,214(3):492-495.
doi: 10.1007/s00425-001-0685-1
[30] Sasaki N, Adachi T, Koda T , et al. Detection of UDP-glucose:cyclo-DOPA 5-O-glucosyltransferase activity in four o’clocks (Mirabilis jalapa L.). FEBS Letters, 2004,568(1-3):159-162.
doi: 10.1016/j.febslet.2004.04.097
[31] Sasaki N, Abe Y, Wada K , et al. Amaranthin in feather cockscombs is synthesized via glucuronylation at the cyclo-DOPA glucoside step in the betacyanin biosynthetic pathway. Journal of Plant Research, 2005,118(6):439-442.
doi: 10.1007/s10265-005-0237-z
[32] Gandia-Herrero F, Escribano J, Garcia-Carmona F . Structural implications on color, fluorescence, and antiradical activity in betalains. Planta, 2010,232(2):449-460.
doi: 10.1007/s00425-010-1191-0 pmid: 20467875
[33] Schliemann W, Kobayashi N, Strack D . The decisive step in betaxanthin biosynthesis is a spontaneous reaction. Plant Physiology, 1999,119(4):1217-1232.
doi: 10.1104/pp.119.4.1217 pmid: 10198080
[34] Godoy-Alcantar C, Yatsimirsky A K, Lehn J M . Structure-stability correlations for imine formation in aqueous solution. Journal of Physical Organic Chemistry, 2005,18(10):979-985.
doi: 10.1002/poc.941
[35] Polturak G, Breitel D, Grossman N , et al. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. The New Phytologist, 2016,210(1):269-283.
doi: 10.1111/nph.13796
[36] Wang H, Li Y, Zhang K , et al. Feasibility and transcriptomic analysis of betalain production by biomembrane surface fermentation of Penicillium novae-zelandiae. AMB Express, 2018,8(1):4-13.
doi: 10.1186/s13568-017-0529-4
[37] Harris N N, Javellana J, Davies K M , et al. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biology, 2012,12(1):34-45.
doi: 10.1186/1471-2229-12-34
[38] Nakatsuka T, Yamada E, Takahashi H , et al. Genetic engineering of yellow betalain pigments beyond the species barrier. Scientific Reports, 2013,3(6):1970-1976.
doi: 10.1038/srep01970 pmid: 23760173
[39] Polturak G, Grossman N, Vela-Corcia D , et al. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(34):9062-9067.
doi: 10.1073/pnas.1707176114
[40] Deloache W C, Russ Z N, Narcross L , et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015,11(7):465-471.
doi: 10.1038/nchembio.1816 pmid: 25984720
[41] Grewal P S, Modavi C, Russ Z N , et al. Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metabolic Engineering, 2018,45(1):180-188.
doi: 10.1016/j.ymben.2017.12.008
[42] Sekiguchi H, Ozeki Y, Sasaki N . In vitro synthesis of betaxanthins using recombinant DOPA 4,5-dioxygenase and evaluation of their radical-scavenging activities. Journal of Agricultural and Food Chemistry, 2010,58(23):12504-12509.
doi: 10.1021/jf1030086
[43] Luo Y, Li B Z, Liu D , et al. Engineered biosynthesis of natural products in heterologous hosts. Chemical Society Reviews, 2015,44(15):5265-5290.
doi: 10.1039/C5CS00025D
[44] Leonard E, Yan Y, Koffas M A . Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metabolic Engineering, 2006,8(2):172-181.
doi: 10.1016/j.ymben.2005.11.001
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[5] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[6] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[7] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[8] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[9] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[10] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[11] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[12] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[13] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[14] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[15] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.