Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (4): 38-51    DOI: 10.13523/j.cb.20190406
研究报告     
添加剂对大孔吸附树脂固定化脂肪酶的影响 *
林海蛟1,2,张继福3,张云1,孙爱君1,胡云峰1**()
1 中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室 广州 510301
2 中国科学院大学 北京 100049
3 广东省中医院 广州 510120
The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin
Hai-jiao LIN1,2,Ji-fu ZHANG3,Yun ZHANG1,Ai-jun SUN1,Yun-feng HU1**()
1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China
2 University of Chinese Academy of Sciences,Beijing 100049,China
3 Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
 全文: PDF(1531 KB)   HTML
摘要:

利用大孔吸附树脂DA-201为载体对海洋脂肪酶固定化,并探寻添加剂对固定化过程的影响。分别以NH4Cl、甘露糖和甘氨酸为添加剂,采用单因素和正交实验相结合的方法优化条件。结果显示,以NH4Cl为添加剂的最优条件:柠檬酸-柠檬酸钠缓冲液pH 6.0,固定化温度30℃,载体投放量0.5g,NH4Cl浓度25mmol/L,固定化时间3.0h,酶活力达到115.27U/g;比不含有添加剂的固定化酶固定化效率提高47.42%。以甘露糖为添加剂最优条件:磷酸二氢钾-氢氧化钠缓冲液pH7.0,固定化温度35℃,载体投放量0.5g,甘露糖浓度10mmol/L,固定化时间4.5h;酶活力达到122.75U/g,比不含有添加剂的固定化酶固定化效率提高6.50%。以甘氨酸为添加剂的最优条件:磷酸二氢钾-氢氧化钠缓冲液pH7.0,固定化温度20℃,载体投放量0.5g,甘氨酸浓度为25mmol/L,固定化时间7.5h;酶活力达到141.69U/g,比不含有添加剂的固定化酶固定化效率提高26.12%。采用不同添加剂对大孔吸附树脂DA-201的吸附固定化过程有较大影响,可以极大地提高吸附效率;同时发现缓冲液类型、pH、温度、添加剂浓度和固定化时间等对DA-201树脂吸附脂肪酶有很大影响,对后续吸附固定化工业酶研究有较好的参考价值。

关键词: 大孔吸附树脂海洋脂肪酶固定化添加剂    
Abstract:

Macroporous absorbent resin DA-201 was adopted as a carrier to immobilize marine-derived lipase, and the influence of additives on the immobilization process was explored. NH4Cl, mannose and glycine were used as the additives, and the conditions were optimized by a combination of single factor and orthogonal experiments. The results showed that the optimal conditions with additive NH4Cl were: citric acid-sodium citrate buffer pH6.0, immobilization temperature 30℃, carrier quantity 0.5g, NH4Cl concentration 25mmol/L, immobilized time 3.0h; enzyme activity reached 115.27U/g, which was 47.42% higher than that of the immobilized enzyme without additive. The optimal conditions with additive mannose were: potassium dihydrogen phosphate-sodium hydroxide buffer pH7.0, immobilized temperature 35℃, carrier quantity 0.5g, mannose concentration 10mmol/L, the immobilized time 4.5h; the enzyme activity reached 122.75U/g, which was 6.50% higher than that of the immobilized enzyme without additive. The optimal conditions with glycine additive: potassium dihydrogen phosphate-sodium hydroxide buffer pH7.0, immobilized temperature 20℃, carrier quantity 0.5g, the glycine concentration 25mmol/L, the immobilized time 7.5h; the enzyme activity reached 141.69U/g, which was 26.12% higher than that of the immobilized enzyme without additive. The addition of different additives exhibited great effects on the immobilization through absorbtion by macroporous absorbent resin DA-201 and could greatly improve the adsorption efficiency. Additionally, buffer type, pH, temperature, additive concentration and immobilization time were found to have great influence on the adsorption of lipase by resin DA-201, which provides good reference for subsequent research of the immobilization of industrial enzymes.

Key words: Macroporous absorbent resin    Marine lipase    Immobilization    Additives
收稿日期: 2018-11-01 出版日期: 2019-05-08
ZTFLH:  Q814.2  
基金资助: *广东省海洋渔业科技攻关与研发方向项目(A201701C12);中国科学院战略性先导科技专项(XDA11030404);中国科学院“科学”号高端用户项目(KEXUE2018G05);广东省自然科学基金资助项目(2018A030313151)
通讯作者: 胡云峰     E-mail: yunfeng.hu@scsio.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林海蛟
张继福
张云
孙爱君
胡云峰

引用本文:

林海蛟,张继福,张云,孙爱君,胡云峰. 添加剂对大孔吸附树脂固定化脂肪酶的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 38-51.

Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin. China Biotechnology, 2019, 39(4): 38-51.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190406        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I4/38

序号 pH 温度
(℃)
载体量
(g)
浓度
(mmol/L)
时间
(h)
1 5.0 20 0.5 10 1.5
2 5.5 25 1.0 15 3.0
3 6.0 30 1.5 20 4.5
4 6.5 35 2.0 25 6.0
表1  NH4Cl固定化条件优化正交实验因素与水平
序号 pH 温度
(℃)
载体量
(g)
浓度
(mmol/L)
时间
(h)
1 6.0 25 0.5 2 1.5
2 6.5 30 1.0 5 3.0
3 7.0 35 1.5 10 4.5
4 7.5 40 2.0 15 6.0
表2  甘露糖固定化条件优化正交实验因素与水平
序号 pH 温度
(℃)
载体量
(g)
浓度
(mmol/L)
时间
(h)
1 6.0 20 0.5 10 3.0
2 6.5 25 1.0 15 4.5
3 7.0 30 1.5 20 6.0
4 7.5 35 2.0 25 7.5
表3  甘氨酸固定化条件优化正交试验因素与水平
图1  载体的筛选和添加剂对脂肪酶吸附固定化的影响
图2  NH4Cl添加剂各条件对脂肪酶吸附固定化的影响
序号 pH 温度(℃) 载体量(g) 浓度(mmol/L) 时间(h) 相对酶活力(%)
1 5.0 20 0.5 10 1.5 72.62±0.97
2 5.0 25 1.0 15 3.0 76.87±0.86
3 5.0 30 1.5 20 4.5 66.82±0.73
4 5.0 35 2.0 25 6.0 55.87±0.96
5 5.5 20 1.0 20 6.0 62.74±1.40
6 5.5 25 0.5 25 4.5 91.14±0.51
7 5.5 30 2.0 10 3.0 61.77±1.03
8 5.5 35 1.5 15 1.5 44.82±1.41
9 6.0 20 1.5 25 3.0 61.55±1.34
10 6.0 25 2.0 20 1.5 55.21±0.43
11 6.0 30 0.5 15 6.0 100.00±1.28
12 6.0 35 1.0 10 4.5 66.62±0.61
13 6.5 20 2.0 15 4.5 55.36±0.63
14 6.5 25 1.5 10 6.0 65.41±1.11
15 6.5 30 1.0 25 1.5 71.53±0.43
16 6.5 35 0.5 20 3.0 91.06±1.36
K1 272.17 252.27 354.82 266.41 244.18
K2 260.48 288.63 277.75 277.05 291.25
K3 283.38 300.12 238.60 275.83 279.94
K4 283.36 258.37 228.22 280.10 284.02
R 22.90 47.85 126.60 13.68 47.07
优势水平 3 3 1 4 2
优势组合 pH6.0, 温度30℃, 载体量0.5g, 浓度25mmol/L, 时间3.0h
主次因素 载体量>温度>时间>pH>浓度
表4  使用NH4Cl的吸附固定化条件优化正交实验结果与分析
图3  甘露糖添加剂各条件对脂肪酶吸附固定化的影响
序号 pH 温度(℃) 载体量(g) 浓度(mmol/L) 时间(h) 相对酶活力(%)
1 6.0 25 0.5 2 1.5 80.57±1.23
2 6.0 30 1.0 5 3.0 55.17±2.50
3 6.0 35 1.5 10 4.5 71.18±1.97
4 6.0 40 2.0 15 6.0 50.25±2.13
5 6.5 25 1.0 10 6.0 82.37±1.91
6 6.5 30 0.5 15 4.5 93.74±0.49
7 6.5 35 2.0 2 3.0 44.10±1.86
8 6.5 40 1.5 5 1.5 54.56±1.79
9 7.0 25 1.5 15 3.0 61.60±1.50
10 7.0 30 2.0 10 1.5 47.96±0.50
11 7.0 35 0.5 5 6.0 100.00±0.81
12 7.0 40 1.0 2 4.5 70.73±2.32
13 7.5 25 2.0 5 4.5 46.93±1.38
14 7.5 30 1.5 2 6.0 48.55±0.79
15 7.5 35 1.0 15 1.5 65.13±0.87
16 7.5 40 0.5 10 3.0 79.81±0.50
K1 257.18 271.47 354.12 243.95 248.23
K2 274.77 245.42 273.40 256.66 240.69
K3 280.29 280.42 235.90 281.32 282.58
K4 240.42 255.34 189.24 270.73 281.16
R 39.87 35.00 164.89 37.37 41.89
优势水平 3 3 1 3 3
优势组合 pH7.0, 温度35℃, 载体量0.5g, 浓度10mmol/L, 时间4.5h
主次因素 载体量>时间>pH>浓度>温度
表5  使用甘露糖的吸附固定化条件优化正交实验结果与分析
图4  甘氨酸添加剂各条件对脂肪酶吸附固定化的影响
序号 pH 温度(℃) 载体量(g) 浓度(mmol/L) 时间(h) 相对酶活力(%)
1 6.0 20 0.5 10 3.0 89.55±0.52
2 6.0 25 1.0 15 4.5 70.73±1.11
3 6.0 30 1.5 20 6.0 52.93±0.52
4 6.0 35 2.0 25 7.5 50.92±0.51
5 6.5 20 1.0 20 7.5 78.02±2.12
6 6.5 25 0.5 25 6.0 86.82±1.59
7 6.5 30 2.0 10 4.5 48.21±0.54
8 6.5 35 1.5 15 3.0 50.09±0.82
9 7.0 20 1.5 25 4.5 75.86±1.08
10 7.0 25 2.0 20 3.0 66.10±1.57
11 7.0 30 0.5 15 7.5 100.00±1.42
12 7.0 35 1.0 10 6.0 72.46±0.57
13 7.5 20 2.0 15 6.0 59.18±1.06
14 7.5 25 1.5 10 7.5 61.70±0.77
15 7.5 30 1.0 25 3.0 76.22±0.89
16 7.5 35 0.5 20 4.5 81.37±0.88
K1 264.13 302.61 357.74 271.92 281.97
K2 263.15 285.36 297.43 280 276.17
K3 314.42 277.36 240.58 278.41 271.39
K4 278.47 254.84 224.42 289.83 290.64
R 51.27 47.76 133.33 17.91 19.25
优势水平 3 1 1 4 4
优势组合 pH7.0温度20℃载体量0.5浓度25时间7.5h
主次因素 载体量>pH>温度>时间>浓度
表6  使用甘氨酸吸附固定化条件优化正交实验结果与分析
[1] 念保义, 黄志华, 罗菊香 , 等. 脂肪酶转酯化和水解反应拆分薄荷醇的研究进展. 化工进展, 2011,30(6):1320-1325.
Niang B Y, Huang Z H, Luo J X , et al. Advances in lipase transesterification and hydrolysis reaction for resolution of menthol. Chemical Progress, 2011,30(6):1320-1325.
[2] 蒋振华, 于敏, 任立伟 , 等. 有机相中固定化脂肪酶催化合成植物甾醇酯. 催化学报, 2013,34(12):2255-2262.
doi: 10.1016/S1872-2067(12)60700-1
Jiang Z H, Yu M, Ren L W , et al. Catalytic synthesis of phytosterol esters by immobilized lipase in organic phase. Chinese Journal of Catalysis, 2013,34(12):2255-2262.
doi: 10.1016/S1872-2067(12)60700-1
[3] 赵天涛, 高静, 张丽杰 , 等. 有机相中脂肪酶催化合成乳酸乙酯. 催化学报, 2006,27(6):537-540.
doi: 10.3321/j.issn:0253-9837.2006.06.018
Zhao T T, Gao J, Zhang L J , et al. Catalytic synthesis of ethyl lactate by lipase in organic phase. Chinese Journal of Catalysis, 2006,27(6):537-540.
doi: 10.3321/j.issn:0253-9837.2006.06.018
[4] 相欣然, 黄和, 胡燚 . 纳米复合材料固定化酶的研究进展. 无机化学学报, 2017,33(1):1-15.
doi: 10.11862/CJIC.2017.016
Xiang X R, Huang H, Hu Y . Advances in research on immobilized enzymes of nanocomposites. Journal of Inorganic Chemistry, 2017,33(1):1-15.
doi: 10.11862/CJIC.2017.016
[5] Tran D N, Balkus K J . Perspective of recent progress in immobilization of enzymes. ACS Catalysis, 2011,1(8):956-968.
doi: 10.1021/cs200124a
[6] Rodrigues R C, Oritiz C, Berenguer-Murcia A , et al. Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews., 2013,42(15):6290-6307.
doi: 10.1039/c2cs35231a pmid: 23059445
[7] Zhang Y, Ge J, Liu Z . Enhanced activity of immobilized or chemically modified enzymes. ACS Catalysis, 2015,5(8):4503-4513.
doi: 10.1021/acscatal.5b00996
[8] 韩志萍, 叶剑芝, 罗荣琼 . 固定化酶的方法及其在食品中的应用研究进展. 保鲜与加工, 2012,12(5):48-53.
doi: 10.3969/j.issn.1009-6221.2012.05.011
Han Z P, Ye J Z, Luo R Q . Advances in immobilized enzymes and their applications in foods. Preservation and Processing, 2012,12(5):48-53.
doi: 10.3969/j.issn.1009-6221.2012.05.011
[9] 徐珊, 李任强, 张继福 , 等. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶. 中国生物工程杂志, 2017,37(12):77-83.
Xu S, Li R Q, Zhang J F , et al. Ethylene glycol diglycidyl ether cross-linked with sodium alginate-carboxymethyl cellulose to immobilized lipase. China Biotechnology, 2017,37(12):77-83.
[10] 游金坤, 余旭亚, 赵鹏 . 吸附法固定化酶的研究进展. 化学工程, 2012,40(4):1-5.
doi: 10.3969/j.issn.1005-9954.2012.04.001
You J K, Yu X Y, Zhao P . Advances in adsorption of immobilized enzymes. Chemical Engineering, 2012,40(4):1-5.
doi: 10.3969/j.issn.1005-9954.2012.04.001
[11] 王跃生, 王洋 . 大孔吸附树脂研究进展. 中国中药杂志, 2006,31(12):961-965.
doi: 10.3321/j.issn:1001-5302.2006.12.002
Wang Y S, Wang Y . Research progress of macroporous adsorption resin. Chinese Journal of Traditional Chinese Medicine, 2006 , 31(12):961-965.
doi: 10.3321/j.issn:1001-5302.2006.12.002
[12] 黄永林, 阮俊, 沈晓琳 , 等. 大孔吸附树脂分离提取大叶钩藤总生物碱. 广西科学, 2006,13(2):127-129.
doi: 10.3969/j.issn.1005-9164.2006.02.013
Huang Y L, Ruan J, Shen X L , et al. Separation and extraction of total alkaloids from Uncaria macrophylla by macroporous adsorption resin. Guangxi Science, 2006,13(2):127-129.
doi: 10.3969/j.issn.1005-9164.2006.02.013
[13] 吕洁丽, 杨中汉, 袁珂 . 新型凝胶树脂及大孔吸附树脂在中草药成分分离纯化中的应用. 中药材, 2005,28(3):239-242.
doi: 10.3321/j.issn:1001-4454.2005.03.035
Lv J L, Yang Z H, Yuan K . Application of new gel resin and macroporous resin in separation and purification of Chinese herbal medicine components. Chinese Medicinal Materials, 2005,28(3):239-242.
doi: 10.3321/j.issn:1001-4454.2005.03.035
[14] 谢雪凤, 张朝晖, 陈培策 . AB-8大孔吸附树脂固定化过氧化氢酶的研究. 材料导报, 2009,23(18):50-53.
doi: 10.3321/j.issn:1005-023X.2009.18.015
Xie X F, Zhang Z H, Chen P C . Research on immobilization of catalase by AB-8 macroporous adsorption resin. Materials Review, 2009,23(18):50-53.
doi: 10.3321/j.issn:1005-023X.2009.18.015
[15] 赵庆节, 余莹, 周文瑜 , 等. 有机相中大孔吸附树脂固定化酶催化拆分消旋萘普生. 华东理工大学学报, 2001,27(4):423-426.
doi: 10.3969/j.issn.1006-3080.2001.04.026
Zhao Q J, Yu Y, Zhou W Y , et al. Catalytic resolution of racemic naproxen by macroporous adsorption resin immobilized enzyme in organic phase. Journal of East China University of Science and Technology, 2001,27(4):423-426.
doi: 10.3969/j.issn.1006-3080.2001.04.026
[16] 王海雄, 吴侯, 翁新楚 . 大孔吸附树脂固定猪胰脂酶的初步研究. 生物技术, 2004,14(3):27-30.
doi: 10.3969/j.issn.1004-311X.2004.03.015
Wang H X, Wu H, Weng X C . Preliminary study on fixation of porcine pancreatic lipase by macroporous adsorption resin. Biotechnology, 2004,14(3):27-30.
doi: 10.3969/j.issn.1004-311X.2004.03.015
[17] Chang C S, Hsu C S . Enhancement of enantioselectivity on reaction rate of the synthesis of(S)-ketoprofen hydroxyalkyl ester in organic solvents via isopropanol-dried immobilized lipase. Jonrnal of Chemical Technology and Biotechnology, 2005,80(5):537-544.
doi: 10.1002/jctb.1232
[18] 彭维, 欧爱芬 . 金属离子对酶活性影响研究. 酿酒, 2013,40(1):60-62.
doi: 10.3969/j.issn.1002-8110.2013.01.018
Peng W, Ou A F . Research on the effect of metal ions on enzyme activity. Wine Making, 2013,40(1):60-62.
doi: 10.3969/j.issn.1002-8110.2013.01.018
[19] 候爱军, 徐冰斌, 梁亮 , 等. 改进铜皂-分光光度法测定脂肪酶活力. 皮革科学与工程, 2011,21(1):22-27.
doi: 10.3969/j.issn.1004-7964.2011.01.005
Hou A J, Xu B B, Liang L , et al. Improved copper soap-spectrophotometry for determination of lipase activity. Leather Science and Engineering, 2011,21(1):22-27.
doi: 10.3969/j.issn.1004-7964.2011.01.005
[20] 袁勤生 . 酶与酶工程.第二版.上海: 华东理工大学出版社, 2012: 38-39.
Yuan Q S. Enzyme and enzyme engineering. 2nd ed. Shanghai: East China University of Science and Technology Press, 2012: 38-39.
[21] 候丽云 . 脂肪酶固定化及其在催化合成乙酸香茅酯中的应用研究. 扬州:扬州大学, 2013.
Hou L Y . Lipase immobilization and its application in catalytic synthesis of citronellyl acetate. Yangzhou :Yangzhou University, 2013.
[22] 徐珊, 李任强, 张继福 , 等. 使用国产环氧树脂LXEP-120固定化脂肪酶研究. 广西师范大学学报(自然科学版), 2018,36(4):108-118.
Xu S, Li R Q, Zhang J F , et al. Immobilization of lipase using domestic epoxy resin LXEP-120. Journal of Guangxi Normal University (Natural Science Edition), 2018,36(4):108-118.
[1] 陈开通,郑文隆,杨立荣,徐刚,吴坚平. 氨基树脂固定化L-苏氨酸醛缩酶及其应用*[J]. 中国生物工程杂志, 2021, 41(9): 55-63.
[2] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[3] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[4] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[5] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[6] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[7] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[8] 张颖,王莹,杨立荣,吴坚平. DA-F127水凝胶包埋固定化含腈水合酶细胞[J]. 中国生物工程杂志, 2019, 39(11): 70-77.
[9] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[10] 杜凯,张卓玲,李婷华,饶微. 抗体固定化方法研究进展[J]. 中国生物工程杂志, 2018, 38(4): 78-89.
[11] 李继彬, 陈志, 陈华友. 腈水解酶克隆表达、固定化及分子改造的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 141-147.
[12] 徐珊,李任强,张继福,张云,孙爱君,胡云峰. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶 *[J]. 中国生物工程杂志, 2017, 37(12): 77-83.
[13] 司洪宇, 王丙莲, 梁晓辉, 张晓东. 酶电极法快速测定甘油含量的研究[J]. 中国生物工程杂志, 2016, 36(12): 79-85.
[14] 王凯, 张威, 李师翁. 植酸酶及其应用[J]. 中国生物工程杂志, 2015, 35(9): 85-93.
[15] 李丽娟, 马贵平, 赵林果. 固定化酶载体研究进展[J]. 中国生物工程杂志, 2015, 35(11): 105-113.