Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (9): 141-147    DOI: 10.13523/j.cb.20170919
综述     
腈水解酶克隆表达、固定化及分子改造的研究进展
李继彬, 陈志, 陈华友
江苏大学生命科学研究院 镇江 212013
Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase
LI Ji-bin, CHEN Zhi, CHEN Hua-you
Institute of Life Science, Jiangsu University, Zhenjiang 212013,China
 全文: PDF(523 KB)   HTML
摘要: 随着基因工程技术的快速发展,通过对不同菌株腈水解酶基因的分析,将其克隆到表达菌株内,可以构建高效并且稳定的基因工程菌。对腈水解酶进行分子改造可以明显提高酶的活性、稳定性、底物耐受性和底物特异性等性能,为腈水解酶的工业化应用提供了可能。综述了腈水解酶的来源、结构、催化机制、克隆表达、固定化及分子改造等方面的研究进展。同时对腈水解酶的研究进行了展望,具有重要的指导意义。
关键词: 腈水解酶固定化分子改造克隆    
Abstract: With the rapid development in genetic engineering technology, the analysis of the nitrilase gene from different strains, was cloned in the expression strain, to construct an efficient and stable genetically engineered bacteria. The molecular modification of the nitrilase could significantly improve the activity stability, substrate tolerance and substrate specificity of the enzyme, which make possible the use of nitrile hydrolase in the industrial applications.The origin, structure, catalytic mechanism, clonal expression, immobilization, molecular modification and prospects of nitrilase were reviewed. And it demonstrate important guidelines for the significance of nitrilase research.
Key words: Nitrilase    Immobilization    Cloning    Molecular modification
收稿日期: 2017-03-08 出版日期: 2017-09-25
ZTFLH:  Q812  
基金资助: 江苏省农业科技自主创新资金项目(CX(17)3044)、江苏省重点研发计划(现代农业)2017年度资助项目
通讯作者: 陈华友     E-mail: hyc@ujs.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈华友
李继彬
陈志

引用本文:

李继彬, 陈志, 陈华友. 腈水解酶克隆表达、固定化及分子改造的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 141-147.

LI Ji-bin, CHEN Zhi, CHEN Hua-you. Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase. China Biotechnology, 2017, 37(9): 141-147.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170919        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I9/141

[1] Brenner C. Catalysis in the nitrilase superfamily. Current Opinion in Structural Biology, 2002, 12(6):775-782.
[2] Mathew S, Nadarajan S P, Sundaramoorthy U, et al. Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase. Biotechnol Lett, 2017, 39(4):534-543.
[3] Luo H, Ma J, Chang Y, et al. Directed evolution and mutant characterization of nitrilase from Rhodococcus rhodochrous, tg1-A6. Applied Biochemistry and Biotechnology, 2016, 178(8):1510-1521.
[4] Banerjee A, Sharma R,Banerjee U C. The nitrile-degrading enzymes:current status and future prospects. Applied Microbiology and Biotechnology, 2002, 60(1-2):33-44.
[5] Martinkova L, Vejvoda V, Kaplan O, et al. Fungal nitrilases as biocatalysts:Recent developments. Biotechnology Advances, 2009, 27(6):661-670.
[6] Lehmann T, Janowitz T, Sánchez-Parra B, et al. Arabidopsis nitrilase I contributes to the regulation of root growth and development through modulation of auxin biosynthesis in seedlings. Frontiers in Plant Science, 2017,8(36):1-15.
[7] 龚劲松,李恒,谢旻峰,等. 重组真菌腈水解酶的发酵工艺条件及生物催化特性初探. 精细化工, 2015, 32(10):1112-1119. Gong J S, Li H, Xie M F, et al.Studies on fermentation conditions and biocatalytic properties of recombinant fungi nitrilase. Fine Chemicals, 2015, 32(10):1112-1119.
[8] 薛媛, 薛亚平, 郑裕国. 区域选择性腈水解酶在化学品合成中的应用. 精细与专用化学品, 2016, 24(5):25-31. Xue Y, Xue Y P, Zheng Y G. Application of regioselectivity nitrilase in synthesis of chemicals. Fine & Specialty Chemicals, 2016, 24(5):25-31.
[9] Thimann K V, Mahadevan S. Nitrilase.I.occurrence,preparation,and general properties of the enzyme. Archives of Biochemistry & Biophysics, 1964, 105(1):133-141.
[10] Chen H, Chen Z, Ni Z, et al. Display of Thermotoga maritima, MSB8 nitrilase on the spore surface of Bacillus subtilis, using out coat protein CotG as the fusion partner. Journal of Molecular Catalysis B Enzymatic, 2016, 123(JAN):73-80.
[11] Dennett G V, Blamey J M. A New Thermophilic nitrilase from an antarctic hyperthermophilic microorganism. Frontiers in Bioengineering & Biotechnology, 2016,4(5):1-9.
[12] Nicholas M S, Karen T R, Andreas K. Lonza:20 years of biotransformations. Cheminform, 2003, 34(27):425-435.
[13] Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today and tomorrow. Nature, 2001, 409(6817):258-268.
[14] Pace H C, Brenner C. The nitrilase superfamily:classification, structure and function. Genome Biology, 2001, 2(1):1-9.
[15] Raczynska J E, Vorgias C E, Antranikian G, et al. Crystallographic analysis of a thermoactive nitrilase. Journal of Structural Biology. 2011, 173(2):294-302.
[16] Zhang L, Yin B, Wang C, et al. Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803. Journal of Structural Biology, 2014, 188(2):93-101.
[17] Banerjee A, Sharma R, Banerjee U C. A rapid and sensitive fluorometric assay method for the determination of nitrilase activity. Biotechnology & Applied Biochemistry, 2003, 37(3):289-293.
[18] Pace H C, Hodawadekar S C, Draganescu A, et al. Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Current Biology, 2000, 10(15):907-917.
[19] Kiziak C, Klein J, Stolz A. Influence of different carboxy-terminal mutations on the substrate,reaction-and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Protein Engineering Design & Selection Peds, 2007,20(8):385-396.
[20] Williamson D S, Dent K C, Weber B W, et al. Structural and biochemical characterization of a nitrilase from the thermophilic bacterium, Geobacillus pallidus, RAPc8. Applied Microbiology and Biotechnology, 2010, 88(1):143-153.
[21] Vejvoda V, Kubac D, Davidova A, et al. Purification and characterization of nitrilase from Fusarium solani IMI196840. Process Biochem, 2010, 45(7):1115-1120.
[22] 陈志. 海栖热袍菌腈水解酶表达鉴定及在枯草杆菌芽孢表面展示. 镇江:江苏大学,生命科学研究院,2016. Chen Z. Expression and Characterization of Thermotoga maritima MSB8 Nitrilase and Its Surface Display on Bacillus subtilis spore. Zhen Jiang:Life Science Research Institute,Jiangsu University, 2016.
[23] Hook R H, Robinson W G. Ricinine nitrilase.Ⅱ.purification and properties. Journal of Biological Chemistry, 1965, 239(12):4263-4267.
[24] Banerjee A, Sharma R, Banerjee U C. The nitrile-degrading enzymes:current status and future prospects. Applied Microbiology and Biotechnology, 2002,60(1-2):33-44.
[25] Chen J, Zheng R C, Zheng Y G, et al. Microbial transformation of nitriles to high-value acids or amides. Advances in Biochemical Engineering/Biotechnology, 2009, 113(35):33-77.
[26] Piotrowski M, Schonfelder S,Weiler E W. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase. Journal of Biological Chemistry, 2001, 276(4):2616-2621.
[27] Jenrich R, Trompetter I, Bak S, et al. Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47):18848-18853.
[28] Stevenson D E, Feng R, Dumas F, et al. Mechanistic and structural studies on Rhodococcus ATCC 39484 nitrilase. Biotechnology & Applied Biochemistry, 1992, 15(3):283-302.
[29] Nagasawa T, Wieser M, Nakamura T, et al. Nitrilase of Rhodococcus rhodochrous J1- Conversion into the active form by subunit association. Eur J Biochem, 2000, 267(1):138-144.
[30] 郝劲松. Gibberella intermedia腈水解酶的克隆、鉴定及分子改造. 无锡:江南大学,生物工程学院,2013. Hao J S. Cloning, Identification and Molecular Modification of Gibberella intermedia Nitrilase. Wuxi:Jiangnan University,College of Bioengineering, 2013.
[31] Stalker D M, Mcbride K E. Cloning and expression in Escherichia coli of a Klebsiella ozaenae plasmid-borne gene encoding a nitrilase specific for the herbicide bromoxynil. Journal of Bacteriology, 1987, 169(3):955-960.
[32] Bartling D, Seedorf M, MithÖFer A, et al. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. European Journal of Biochemistry, 1992, 205(1):417-424.
[33] Pekarsky Y, Campiglio M, Siprashvili Z, et al. Nitrilase and fhit homologs are encoded as fusion proteins in Drosophila melanogaster and Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(15):8744-8749.
[34] Kobayashi M, Izui H, Nagasawa T, et al. Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile:cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(1):247-251.
[35] LevySchil S, Soubrier F, Crutz-Le Coq A M, et al. Aliphatic nitrilase from a soil-isolated Comamonas testosteroni sp.:gene cloning and overexpression, purification and primary structure. Gene, 1995, 161(1):15-20.
[36] Kobayashi M, Yanaka N, Nagasawa T, et al. Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Biochemistry, 1992, 31(37):9000-9007.
[37] Zhu D, Mukherjee C, Yang Y, et al. A new nitrilase from Bradyrhizobium japonicum USDA 110. Gene cloning, biochemical characterization and substrate specificity.Journal of Biotechnology, 2008, 133(3):327-333.
[38] Chen Z, Chen H, Ni Z, et al. Expression and characterization of a novel nitrilase from hyperthermophilic bacterium Thermotoga maritima MSB8. Journal of Microbiology & Biotechnology, 2015, 25(10):1660-1669.
[39] Mueller P, Egorova K, Vorgias C E, et al. Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. Protein Expression & Purification, 2006, 47(2):672-681.
[40] Kaplan O, Bezouska K, Plihal O, et al. Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10. Bmc Biotechnol, 2011, 11(32):1-15.
[41] Yusuf F, Jamwal U, Chaubey A, et al. Cloning and functional characterization of nitrilase from Fusarium proliferatum AUF-2 for detoxification of nitriles. Functional & Integrative Genomics, 2015, 15(4):413-424
[42] Veselá A B, Rucká L, Kaplan O, et al. Bringing nitrilase sequences from databases to life:the search for novel substrate specificities with a focus on dinitriles. Applied Microbiology and Biotechnology, 2016, 100(5):1-10.
[43] Schreiner U, Hecher B, Obrowsky S, et al. Directed evolution of Alcaligenes faecalis nitrilase. Enzyme & Microbial Technology, 2010, 47(4):140-146.
[44] Yeom S J, Kim H J, Lee J K, et al. An amino acid at position 142 in nitrilase from Rhodococcus rhodochrous ATCC 33278 determines the substrate specificity for aliphatic and aromatic nitriles. Biochemical Journal, 2008, 415(3):401-407.
[45] Sosedov O, Baum S, Burger S, et al. Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides. Applied & Environmental Microbiology, 2010, 76(11):3668-3674.
[46] Petǐíčková A, Sosedov O, Baum S, et al. Influence of point mutations near the active site on the catalytic properties of fungal arylacetonitrilases from Aspergillus niger, and Neurospora crassa. Journal of Molecular Catalysis B Enzymatic, 2012, 77(9):74-80.
[47] Kumar S, Mohan U, Kamble A L, et al. Cross-linked enzyme aggregates of recombinant Pseudomonas putida nitrilase for enantioselective nitrile hydrolysis. Bioresource Technology, 2010, 101(17):6856-6858.
[48] Nigam V K, Khandelwal A K, Gothwal R K, et al. Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp.. Journal of Biosciences, 2009, 34(1):21-26.
[49] Kaul P, Banerjee A,Banerjee U C. Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules, 2006, 7(5):1536-1541.
[50] Chen H, Chen Z, Wu B, et al. Influences of various peptide linkers on the Thermotoga maritima MSB8 nitrilase displayed on the spore surface of Bacillus subtilis. Journal of Molecular Microbiology & Biotechnology, 2017,27(1):64-71.
[1] 陈开通,郑文隆,杨立荣,徐刚,吴坚平. 氨基树脂固定化L-苏氨酸醛缩酶及其应用*[J]. 中国生物工程杂志, 2021, 41(9): 55-63.
[2] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[3] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[4] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[5] 贾晓,邱瑾,舒娟,李华,习书斌,曾溢滔,曾凡一. 血清孕酮水平检测在克隆胚胎移植受体牛的筛选及妊娠诊断中的应用 *[J]. 中国生物工程杂志, 2020, 40(7): 1-8.
[6] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[7] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[8] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[9] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[10] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[11] 孔建涛,庄英萍,郭美锦. 基于DOE设计和氨基酸补加策略提高CHO细胞表达抗CD20单克隆抗体*[J]. 中国生物工程杂志, 2020, 40(12): 41-48.
[12] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[13] 袁晓英,王亚哲,石韦华,常艳,郝乐,贺玲玲,石红霞,黄晓军,刘艳荣. 流式检测PNH克隆的方法学探讨及临床筛检和意义 *[J]. 中国生物工程杂志, 2019, 39(9): 33-40.
[14] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[15] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.