Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (10): 109-115    DOI: 10.13523/j.cb.2106033
综述     
柴油生物酶催化氧化脱硫的研究进展
杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良()
南京工业大学生物与制药工程学院 南京 211816
Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes
YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang()
College of Biotechnology and Pharmace utical Engineering, Nanjing Tech University, Nanjing 211816, China
 全文: PDF(829 KB)   HTML
摘要:

柴油作为热值高、消耗率低的石油馏分燃料,可搭配大功率机械的使用标准,在传统能源中使用占比越来越高,被广泛应用于各种大型器械运作和生产中。随着柴油消耗的增多,柴油使用的污染问题也开始得到重视。硫作为主要污染物,在新的柴油标准中有了更高的要求,有必要对各脱硫方法进行深入探讨和工艺创新。传统加氢脱硫局限性过大,因此开发了各种非加氢脱硫方式进行脱硫研究,旨在研发出高效率和环境友好的绿色脱硫方式。综述了各种常规脱硫方法的优点和不足,归纳了生物酶催化氧化脱硫的研究现状和国内外最新进展,重点讨论了生物酶的各种脱硫方式的反应机理和具体研究实例,并对未来新型脱硫方式研究前景进行展望。

关键词: 柴油脱硫酶催化氧化固定化酶    
Abstract:

As a petroleum distillate fuel with high calorific value and low consumption rate, diesel can be matched with the use standard of high-power machinery. It accounts for an increasing proportion in traditional energy. It is widely used in the operation and production of various large-scale equipment. With the increase of diesel consumption, the pollution problem of diesel has begun to drawn attention. Sulfur, as the main pollutant, has higher requirements in the new diesel standard. It is necessary to explore the desulfurization methods and innovate the technology. Traditional hydrodesulfurization has a number of limitations, so a variety of non hydrodesulfurization methods have been developed for desulfurization research, aiming to develop a green desulfurization method with high efficiency and environmental friendliness. This paper mainly summarizes the advantages and disadvantages of various conventional desulfurization methods. The research status and the latest progress of enzyme catalyzed oxidative desulfurization at home and abroad were reviewed. The reaction mechanism and specific research examples of various desulfurization methods were discussed. On this basis, the various methods were summarized and analyzed, and the author’s point of view and the prospect of new desulfurization methods in the future were put forward.

Key words: Diesel desulfurization    Enzyme catalyzed oxidation    Immobilized enzyme
收稿日期: 2021-06-18 出版日期: 2021-11-08
ZTFLH:  Q819  
通讯作者: 朱建良     E-mail: jlzhu@njtech.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨运松
梁金花
杨晓瑞
马艺鸣
金爽
孙姚瑶
朱建良

引用本文:

杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.

YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes. China Biotechnology, 2021, 41(10): 109-115.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106033        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I10/109

图1  Kodama途径
图2  4S途径
微生物种类 品系 参考文献
红球菌 SHT87 [17]
红球菌、恶臭假单胞菌 IGTS8、CECT 5279 [18] 、[19]
红球菌 USTB-03 [20]
戈登氏菌 RIPI-22 [21]
农杆菌 MC 501 [22]
登氏菌 RIPI90A [23]
类芽孢杆菌 AII-2 [24]
鞘氨醇单胞菌 TZS-7 [25]
表1  产生胞内脱硫酶的细菌菌株
[1] Sadare O, Obazu F, Daramola M. Biodesulfurization of petroleum distillates-current status, opportunities and future challenges. Environments, 2017, 4(4): 85.
doi: 10.3390/environments4040085
[2] Li S Z, Mominou N, Wang Z W, et al. Ultra-deep desulfurization of gasoline with CuW/TiO2-GO through photocatalytic oxidation. Energy & Fuels, 2016, 30(2): 962-967.
[3] Stanislaus A, Marafi A, Rana M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 2010, 153(1-2): 1-68.
doi: 10.1016/j.cattod.2010.05.011
[4] 于晖, 黄辰君, 韦进金. 国六柴油机后处理系统试验研究对比. 内燃机与配件, 2020(22): 7-8.
Yu H, Huang C J, Wei J J. Comparison of experimental research on post-treatment system of state six diesel engine. Internal Combustion Engine & Parts, 2020(22): 7-8.
[5] Borzenkova N V, Veselova I A, Shekhovtsova T N. Biochemical methods of crude hydrocarbon desulfurization. Biology Bulletin Reviews, 2013, 3(4): 296-311.
doi: 10.1134/S2079086413040026
[6] Shafi R, Hutchings G J. Hydrodesulfurization of hindered dibenzothiophenes: an overview. Catalysis Today, 2000, 59(3-4): 423-442.
doi: 10.1016/S0920-5861(00)00308-4
[7] Ganiyu S A, Ajumobi O O, Lateef S A, et al. Boron-doped activated carbon as efficient and selective adsorbent for ultra-deep desulfurization of 4, 6-dimethyldibenzothiophene. Chemical Engineering Journal, 2017, 321: 651-661.
doi: 10.1016/j.cej.2017.03.132
[8] 吴沛文, 荀苏杭, 蒋伟, 等. 离子液体反应型萃取燃油脱硫研究进展. 化工学报, 2021, 72(1): 276-291.
Wu P W, Xun S H, Jiang W, et al. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts. CIESC Journal, 2021, 72(1): 276-291.
[9] Bryzhin A A, Buryak A K, Gantman M G, et al. Heterogeneous catalysts SILP with phosphotungstic acid for oxidative desulfurization: effect of ionic liquid. Kinetics and Catalysis, 2020, 61(5): 775-785.
doi: 10.1134/S0023158420050018
[10] 张晓凡, 张敬然, 朱艺佳. 氧化法脱除柴油硫化物的研究进展. 现代盐化工, 2018, 45(1): 11-12.
Zhang X F, Zhang J R, Zhu Y J. Research progress on oxidation of diesel sulfide. Modern Salt and Chemical Industry, 2018, 45(1): 11-12.
[11] Said S, Abdelrahman A A. Atomic layer deposition of MoO3 on mesoporous γ-Al2O3 prepared by Sol-gel method as efficient catalyst for oxidative desulfurization of refractory dibenzothiophene compound. Journal of Sol-Gel Science and Technology, 2020, 95(2): 308-320.
doi: 10.1007/s10971-020-05332-w
[12] Porto B, Maass D, Oliveira J V, et al. Heavy gas oil biodesulfurization using a low-cost bacterial consortium. Journal of Chemical Technology & Biotechnology, 2018, 93(8): 2359-2363.
[13] Sohrabi M, Kamyab H, Janalizadeh N, et al. Bacterial desulfurization of organic sulfur compounds exist in fossil fuels. Journal of Pure & Applied Microbiology, 2012, 6(2): 717-729.
[14] Martínez I, El-Said Mohamed M, Santos V E, et al. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria. Journal of Biotechnology, 2017, 262: 47-55.
doi: S0168-1656(17)31644-9 pmid: 28947364
[15] Martinez I, Santos V E, Alcon A, et al. Enhancement of the biodesulfurization capacity of Pseudomonas putida CECT5279 by co-substrate addition. Process Biochemistry, 2015, 50(1): 119-124.
doi: 10.1016/j.procbio.2014.11.001
[16] Chen S Q, Zhao C C, Liu Q Y, et al. Thermophilic biodesulfurization and its application in oil desulfurization. Applied Microbiology and Biotechnology, 2018, 102(21): 9089-9103.
doi: 10.1007/s00253-018-9342-5
[17] Davoodi-Dehaghani F, Vosoughi M, Ziaee A A. Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Bioresource Technology, 2010, 101(3): 1102-1105.
doi: 10.1016/j.biortech.2009.08.058 pmid: 19819129
[18] Caro A, Boltes K, Letón P, et al. Biodesulfurization of dibenzothiophene by growing cells of Pseudomonas putida CECT 5279 in biphasic media. Chemosphere, 2008, 73(5): 663-669.
doi: 10.1016/j.chemosphere.2008.07.031
[19] Calzada J, Alcon A, Santos V E, et al. Extended kinetic model for DBT desulfurization using Pseudomonas putida CECT5279 in resting cells. Biochemical Engineering Journal, 2012, 66: 52-60.
doi: 10.1016/j.bej.2012.04.018
[20] Yan H, Sun X D, Xu Q Q, et al. Effects of nicotinamide and riboflavin on the biodesulfurization activity of dibenzothiophene by Rhodococcus erythropolis USTB-03. Journal of Environmental Sciences, 2008, 20(5): 613-618.
doi: 10.1016/S1001-0742(08)62102-6
[21] Rashtchi M, Mohebali G H, Akbarnejad M M, et al. Analysis of biodesulfurization of model oil system by the Bacterium, strain RIPI-22. Biochemical Engineering Journal, 2006, 29(3): 169-173.
doi: 10.1016/j.bej.2005.08.034
[22] Constantí M, Giralt J, Bordons A. Degradation and desulfurization of dibenzothiophene sulfone and other sulfur compounds by Agrobacterium MC501 and a mixed culture. Enzyme and Microbial Technology, 1996, 19(3): 214-219.
doi: 10.1016/0141-0229(95)00236-7
[23] Shavandi M, Sadeghizadeh M, Zomorodipour A, et al. Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Bioresource Technology, 2009, 100(1): 475-479.
doi: 10.1016/j.biortech.2008.06.011 pmid: 18653330
[24] Onaka T, Konishi J, Ishii Y, et al. Desulfurization characteristics of thermophilic Paenibacillus sp strain A11-2 against asymmetrically alkylated dibenzothiophenes. Journal of Bioscience and Bioengineering, 2001, 92(2): 193-196.
pmid: 16233084
[25] Lu J, Nakajima-Kambe T, Shigeno T, et al. Biodegradation of dibenzothiophene and 4, 6-dimethyldibenzothiophene by Sphingomonas paucimobilis strain TZS-7. Journal of Bioscience and Bioengineering, 1999, 88(3): 293-299.
pmid: 16232614
[26] Adlakha J, Singh P, Ram S K, et al. Optimization of conditions for deep desulfurization of heavy crude oil and hydrodesulfurized diesel by Gordonia sp IITR100. Fuel, 2016, 184: 761-769.
doi: 10.1016/j.fuel.2016.07.021
[27] Nassar H N, Abu Amr S S, El-Gendy N S. Biodesulfurization of refractory sulfur compounds in petro-diesel by a novel hydrocarbon tolerable strain Paenibacillus glucanolyticus HN4. Environmental Science and Pollution Research, 2021, 28(7): 8102-8116.
doi: 10.1007/s11356-020-11090-7
[28] Dinamarca M A, Ibacache-Quiroga C, Baeza P, et al. Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption. Bioresource Technology, 2010, 101(7): 2375-2378.
doi: 10.1016/j.biortech.2009.11.086
[29] Karimi A M, Sadeghi S, Salimi F. Biodesulphurization of thiophene as a sulphur model compound in crude oils by Pseudomonas aeruginosa supported on polyethylene. Ecological Chemistry and Engineering S, 2017, 24(3): 371-379.
doi: 10.1515/eces-2017-0024
[30] Ayala M, Verdin J, Vazquez-Duhalt R. The prospects for peroxidase-based biorefining of petroleum fuels. Biocatalysis and Biotransformation, 2007, 25(2-4): 114-129.
doi: 10.1080/10242420701379015
[31] Montiel C, Terrés E, Domínguez J M, et al. Immobilization of chloroperoxidase on silica-based materials for 4, 6-dimethyl dibenzothiophene oxidation. Journal of Molecular Catalysis B: Enzymatic, 2007, 48(3-4): 90-98.
doi: 10.1016/j.molcatb.2007.06.012
[32] Aburto P, Zuéiga K, Campos-Terán J, et al. Quantitative analysis of sulfur in diesel by enzymatic oxidation, steady-state fluorescence, and linear regression analysis. Energy & Fuels, 2014, 28(1): 403-408.
doi: 10.1021/ef400964q
[33] Bhasarkar J, Borah A J, Goswami P, et al. Mechanistic analysis of ultrasound assisted enzymatic desulfurization of liquid fuels using horseradish peroxidase. Bioresource Technology, 2015, 196: 88-98.
doi: 10.1016/j.biortech.2015.07.063 pmid: 26231128
[34] Singh M P, Kumar M, Kalsi W R, et al. Method for bio-oxidative desulfurization of liquid hydrocarbon fuels and product thereof: United States, 20090217571. 2009-09-03.
[35] Terrés E, Montiel M, Le Borgne S, et al. Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4, 6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions. Biotechnology Letters, 2008, 30(1): 173-179.
doi: 10.1007/s10529-007-9512-5
[36] Juarez-Moreno K, Díaz de León J N, Zepeda T A, et al. Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-γ-Al2O3 nanorods. Journal of Molecular Catalysis B: Enzymatic, 2015, 115: 90-95.
doi: 10.1016/j.molcatb.2015.02.004
[37] Aburto J, Ayala M, Bustos-Jaimes I, et al. Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials. Microporous and Mesoporous Materials, 2005, 83(1-3): 193-200.
doi: 10.1016/j.micromeso.2005.04.008
[38] Ayala M, Hernandez-Lopez E L, Perezgasga L, et al. Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel, 2012, 92(1): 245-249.
doi: 10.1016/j.fuel.2011.06.067
[39] Ryu K, Heo J, Yoo I K. Removal of dibenzothiophene and its oxidized product in anhydrous water-immiscible organic solvents by immobilized cytochrome C. Biotechnology Letters, 2002, 24(2): 143-146.
doi: 10.1023/A:1013806830105
[40] Ansari F, Grigoriev P, Libor S, et al. DBT degradation enhancement by decoratingRhodococcus erythropolisIGST8 with magnetic Fe3O4 nanoparticles. Biotechnology and Bioengineering, 2009, 102(5): 1505-1512.
doi: 10.1002/bit.22161 pmid: 19012265
[41] Shan G B, Xing J M, Zhang H Y, et al. Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Applied and Environmental Microbiology, 2005, 71(8): 4497-4502.
doi: 10.1128/AEM.71.8.4497-4502.2005
[42] Li Y G, Gao H S, Li W L, et al. In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresource Technology, 2009, 100(21): 5092-5096.
doi: 10.1016/j.biortech.2009.05.064
[43] Yazbeck D R, Martinez C A, Hu S H, et al. Challenges in the development of an efficient enzymatic process in the pharmaceutical industry. Tetrahedron: Asymmetry, 2004, 15(18): 2757-2763.
doi: 10.1016/j.tetasy.2004.07.050
[44] Gupta N, Roychoudhury P K, Deb J K. Biotechnology of desulfurization of diesel: prospects and challenges. Applied Microbiology and Biotechnology, 2005, 66(4): 356-366.
doi: 10.1007/s00253-004-1755-7
[45] Alcalde M, Ferrer M, Plou F J, et al. Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends in Biotechnology, 2006, 24(6): 281-287.
pmid: 16647150
[1] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[2] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[3] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[4] 徐珊,李任强,张继福,张云,孙爱君,胡云峰. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶 *[J]. 中国生物工程杂志, 2017, 37(12): 77-83.
[5] 司洪宇, 王丙莲, 梁晓辉, 张晓东. 酶电极法快速测定甘油含量的研究[J]. 中国生物工程杂志, 2016, 36(12): 79-85.
[6] 李丽娟, 马贵平, 赵林果. 固定化酶载体研究进展[J]. 中国生物工程杂志, 2015, 35(11): 105-113.
[7] 黄哲,张涛,林章凛. 纳米SiO2固定化β-葡萄糖苷酶及其在双相体系中水解大豆异黄酮的工艺研究[J]. 中国生物工程杂志, 2008, 28(6): 71-76.
[8] 金科铭,曹学君,庄英萍,储炬,张嗣良. 固定化青霉素酰化酶在光-pH敏感可回用两水相中裂解青霉素G为6-APA[J]. 中国生物工程杂志, 2007, 27(10): 53-58.
[9] 孔珊珊,马明浩,汪洋,陈怡倩,潘延芳,吴自荣. 交联酶聚集体及其研究进展[J]. 中国生物工程杂志, 2006, 26(0): 0-0.
[10] 曹黎明, 陈欢林. 酶的定向固定化方法及其对酶生物活性的影响[J]. 中国生物工程杂志, 2003, 23(1): 22-29.
[11] 庄蕾, 陈冠军, 高培基. SIS聚合物在生物技术中的应用[J]. 中国生物工程杂志, 1998, 18(6): 58-62.
[12] 陈盛, 李柱来. 壳聚糖固定化脲酶研究Ⅱ[J]. 中国生物工程杂志, 1992, 12(5): 40-43,17.
[13] 杨廉婉. 固定化细胞和酶生产L-苹果酸的新进展[J]. 中国生物工程杂志, 1992, 12(4): 24-27.
[14] 杨廉婉. 固定化细胞和酶生产L-苹果酸的新进展[J]. 中国生物工程杂志, 1992, 12(3): 24-27.
[15] Mukheriee,khana, Sengupta,S., 陈冠军. 微生物菊糖酶及其在菊糖转化成果糖中的应用潜力[J]. 中国生物工程杂志, 1992, 12(2): 50-56.