Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (12): 34-39    DOI: 10.13523/j.cb.20171205
研究报告     
CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*
唐存多1,2*,史红玲1*,焦铸锦1,刘飞1,许建和2**(),阚云超1**(),姚伦广1**()
1 南阳师范学院昆虫生物反应器河南省工程实验室 河南省南水北调中线水源区生态安全重点实验室 南阳 473061
2 华东理工大学生物反应器工程国家重点实验室 上海 200237
Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties
Cun-duo TANG1,2*,Hong-ling SHI1*,Zhu-jin JIAO1,Fei LIU1,Jian-he XU2**(),Yun-chao KAN1**(),Lun-guang YAO1**()
1 Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang 473061, China
2 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(650 KB)   HTML
摘要:

低温CPC乙酰化酶在7-ACA的生物合成中具有重要作用和显著的优势,开发低温CPC乙酰化酶具有重大的经济价值。为了获得在低温下具有更高催化活性的CPC乙酰化酶,在前期的研究基础上,以先前获得的CA IIIM为亲本,借助分子对接的手段确定了它的底物结合区域,并利用pyMOL软件找出了底物结合区域Loop上关键的脯氨酸残基,分析后将选定的脯氨酸用甘氨酸进行替换。借助pET32a质粒在E. coli BL21(DE3)中进行了可溶性表达研究,除P272G外,其它突变体均实现了可溶性表达。P238G、P582G和P679G在13℃对CPC的催化活性分别为1.25、1.04和1.38 U/mg,较亲本的0.85 U/mg有了显著的提高。此外,分别考察了亲本及突变体的温度稳定性,它们之间无明显的差异。然后,在13℃下进行了7-ACA低温生物合成的研究,结果表明反应24 h后CPC的转化率也能达到80%以上。由此可见在CPC乙酰化酶冷适应性改造方面取得了较为理想的结果,为进一步的改造及应用奠定了坚实的基础,也为其它低温酶的创制提供了可资借鉴的经验。

关键词: CPC乙酰化酶冷适应性分子改造理性设计活性检测    
Abstract:

Cold-active CPC acylase plays an important role and has significant advantage in the biosynthesis of 7-ACA, thus developing cold-active CPC acylase has significant economic value. In order to obtain the CPC acylase with higher catalytic activity at low temperature, on the basis of previous research, the previously obtained CA IIIM was taken as a parent, confirmed its substrate binding region by the method of molecular docking, and found the key proline residues in the loop of CPC acylase substrate binding region by pyMOL. After analyzing, the selected prolines were mutated into glycines, respectively. The study of soluble expression was carried out in E. coli BL21(DE3) with pET32a plasmid, and soluble expression was achieved in the other mutants except P272G. Catalytic activity of P238G, P582G and P679G to CPC was 1.25, 1.04 and 1.38 U/mg respectively at 13℃, and there was a significant improvement compared with parental 0.85 U/mg. Moreover, the stability of parent and mutants was investigated, and there was no obvious difference between them. Afterwards, the low temperature biosynthesis of 7-ACA was carried out at 13℃, and the results showed that the conversion rate of CPC can reach 80% and above after 24h . The ideal results in cold adaptation improvement of CPC acylase were gained. So a solid foundation for further transformation and application was established, it provided a useful experience for the creating of other low-temperature enzymes.

Key words: CPC acylase    Cold adaptation    Molecular modification    Rational design    Activity assay
收稿日期: 2017-05-25 出版日期: 2017-12-16
ZTFLH:  Q819  
基金资助: 国家自然科学基金(31371381);河南省科技攻关项目(162102210116);河南省高等学校重点科研项目计划(15A416008);河南省南水北调中线水源区水生态安全创新型科技团队专项(17454)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐存多
史红玲
焦铸锦
刘飞
许建和
阚云超
姚伦广

引用本文:

唐存多,史红玲,焦铸锦,刘飞,许建和,阚云超,姚伦广. CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*[J]. 中国生物工程杂志, 2017, 37(12): 34-39.

Cun-duo TANG,Hong-ling SHI,Zhu-jin JIAO,Fei LIU,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties. China Biotechnology, 2017, 37(12): 34-39.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171205        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I12/34

图1  CPC与CAⅢM的三维结构的分子对接模型
NameRemarkPrimer sequence (5'~3')
pET28-2254-Runiversal primerGCCTTACTGGTTAGCAGAATG
P238G-FPro238TCCTGGCGGGTGACGGCCACCGTGTTTTCG
P272G-FPro272GGTGTTCCGGGTTTCGGCCACTTCGCGCACAAC
P582G-FPro582TCGCGGCGGTTCCGGGCGGTGTTTCTCCGCAG
P679G-FPro679GTTCCGTCTGCGGGTGGCGAAGCGACCTACGG
表1  CA IIIM编码基因定点突变所需的引物
图2  重组大肠杆菌表达产物的SDS-PAGE分析
图3  纯化后的重组CPC乙酰化酶的SDS-PAGE分析
NameResidul activity after incubation for 24 hours(%)
-80℃13℃25℃
Parent999892
reCAIIIP238G979590
reCAIIIP582G989086
reCAIIIP679G989285
表2  亲本及突变体的温度稳定性
图4  CPC在低温下的转化率
[1] Tramper J, Beeftink H H, Janssen A E, et al.Biocatalytic production of semi-synthetic cephalosporins: process technology and integration. In: Synthesis of β-Lactam Antibiotics. Bruggink A ed. Dordrecht:Springer, 2001. 206-249.
[2] 马晨露, 唐存多, 史红玲,等. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成. 中国生物工程杂志, 2015,35(12):65-71.
doi: 10.13523/j.cb.20151210
Ma C L, Tang C D, Shi H L, et al.Semi rational modification of cephalosporin C acylase and biosynthesis of 7-ACA. China Biotechnology, 2015,35(12):65-71.
doi: 10.13523/j.cb.20151210
[3] 薛亮. 头孢类抗生素及中间体发展浅析. 精细化工原料及中间体, 2007(03):27-29.
Xue L.Development analysis of cephalosporins and its intermediate. Fine Chemical Industrial Raw Materials and Intermediates, 2007(03):27-29.
[4] Sonawane V C.Enzymatic Modifications of Cephalosporins by Cephalosporin Acylase and Other Enzymes. Crit Rev Biotechnol, 2006, 26(2):95-120.
doi: 10.1080/07388550600718630 pmid: 16809100
[5] Pollegioni L, Rosini E, Molla G.Cephalosporin C acylase: dream and(/or) reality. Appl Microbiol Biotechnol, 2013, 97(6):2341-2355.
doi: 10.1007/s00253-013-4741-0 pmid: 23417342
[6] Pollegioni L, Molla G, Sacchi S, et al.Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Appl Microbiol Biotechnol, 2008, 78(1):1-16.
doi: 10.1007/s00253-007-1282-4 pmid: 18084756
[7] 姚舜, 罗晖, 常雁红等. 一步酶法生产 7-氨基头孢烷酸的研究进展. 现代化工, 2013, 33(2):11-14.
doi: 10.3321/j.issn:0253-4320.2002.12.005
Yao S, Luo H, Chang Y H, et al.Research progress in one-step enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid. Modern Chemical Industry, 2013, 33(2): 11-14.
doi: 10.3321/j.issn:0253-4320.2002.12.005
[8] Wang Y, Yu H, Song W, et al.Overexpression of synthesized cephalosporin C acylase containing mutations in the substrate transport tunnel. J Biosci Bioeng, 2012, 113(1):36-41.
doi: 10.1016/j.jbiosc.2011.08.027 pmid: 21968249
[9] Zhu X, Luo H, Chang Y, et al.Characteristic of immobilized cephalosporin C acylase and its application in one-step enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid. World J Microb Biotechnol, 2011, 27(4):823-829.
doi: 10.1007/s11274-010-0523-3
[10] 柳杏辉. 酶法制备新型医药中间体D-7-ACA工艺研究. 西安: 西北大学, 2009.
doi: 10.7666/d.y1506921
Liu X H.Study on producing a new pharmaceutieal intermediate D-7-ACA with enzymatic technology. Xian: Northwest University, 2009.
doi: 10.7666/d.y1506921
[11] YC S, JY J, KH J: Cephalosporin C acylase mutant and method for preparing 7-ACA using same. In., vol. 7592168. US; 2007.
[12] 曾胤新, 蔡明宏, 俞勇等. 微生物低温酶适冷机制研究进展. 中国生物工程杂志, 2003(10):52-56.
Zeng Y X, Cai M H, Yu Y, et al.Progress of molecular adaptation of cold enzymes from microorganisms. China Biotechnology, 2003(10):52-56.
[13] Ramya L N, Pulicherla K K.Molecular insights into cold active polygalacturonase enzyme for its potential application in food processing. J Food Sci Technol, 2015, 52(9):5484-5496.
doi: 10.1007/s13197-014-1654-6 pmid: 26344963
[14] Feller G, Gerday C.Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol, 2003, 1(3):200-208.
doi: 10.1038/nrmicro773 pmid: 15035024
[15] Tang M A, Motoshima H, Watanabe K.Cold adaptation: structural and functional characterizations of psychrophilic and mesophilic acetate kinase. Protein J, 2014, 33(4):313-322.
doi: 10.1007/s10930-014-9562-1 pmid: 24801996
[16] Sanchis J, Fernández L, Carballeira J D, et al.Improved PCR method for the creation of saturation mutagenesis libraries in directed evolution: application to difficult-to-amplify templates. Appl Microb Biotechnol, 2008, 81(2):387-397.
doi: 10.1007/s00253-008-1678-9 pmid: 18820909
[17] Bradford M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72:248-254.
doi: 10.1016/0003-2697(76)90527-3
[18] Laemmli U K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227:680-685.
doi: 10.1038/227680a0
[19] 徐雪丽, 张伟, 刘艳,等. 头孢菌素C酰化酶突变位点的研究. 中国生物工程杂志, 2015,35(2):59-65.
doi: 10.13523/j.cb.20150209
Xu X L, Zhang W, Liu Y, et al.Study on mutaions of cephalosporin C acylase. China Biotechnology, 2015,35(2): 59-65.
doi: 10.13523/j.cb.20150209
[20] Li Y, Chen J, Jiang W, et al.In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. European Journal of Biochemistry, 1999, 262(3):713-719.
doi: 10.1046/j.1432-1327.1999.00417.x pmid: 10411632
[1] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[2] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[3] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[4] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[5] 陈方,徐刚,杨立荣,吴坚平. 定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *[J]. 中国生物工程杂志, 2018, 38(9): 59-64.
[6] 李继彬, 陈志, 陈华友. 腈水解酶克隆表达、固定化及分子改造的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 141-147.
[7] 贺霖伟, 刘璋敏, 冯雁, 崔莉. 谷氨酸依赖型氨基转移酶的高通量筛选方法及其应用[J]. 中国生物工程杂志, 2017, 37(8): 59-65.
[8] 王冬冬, 张国利, 岳玉环, 吴广谋, 田园, 刘雨玲, 吉元刚, 王金鹏, 李建, 潘荣荣, 马洪圆. 抗A型产气荚膜梭菌α毒素全人源双价单链抗体的构建、表达及其活性的初步研究[J]. 中国生物工程杂志, 2017, 37(4): 18-25.
[9] 徐振宇, 任红艳, 毕延震, 郑新民, 李莉, 张佳兰. 单细胞PCR体系的建立及其在CRISPR/Cas9靶点活性检测中的应用[J]. 中国生物工程杂志, 2017, 37(2): 74-80.
[10] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.
[11] 郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.
[12] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[13] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[14] 孙少飞, 汪蓓蕾, 袁婷, 张斌, 张欣, 郭刚, 张瑞. 重组蛋白TAT-NLS-Nkx6.2在大肠杆菌的表达纯化及活性测定[J]. 中国生物工程杂志, 2013, 33(9): 24-30.
[15] 王晚璞, 孙茂盛, 李鸿钧, 谢天宏, 严敏, 周艳, 尹娜. 表达神经营养因子Neurturin的骨髓间充质干细胞的构建及体外活性检测[J]. 中国生物工程杂志, 2012, 32(03): 1-6.