Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (9): 113-121    DOI: 10.13523/j.cb.20140917
综述     
生物催化剂发现与改造的研究进展
唐存多1, 史红玲1, 唐青海1, 焦铸锦1, 阚云超1, 邬敏辰2, 李剑芳3
1. 南阳师范学院中英联合实验室 南阳 473061;
2. 江南大学无锡医学院 无锡 214122;
3. 江南大学食品学院 无锡 214122
Recent Trends in Discovery and Protein Engineering of Biocatalysts
TANG Cun-duo1, SHI Hong-ling1, TANG Qing-hai1, JIAO Zhu-jing1, KAN Yun-chao1, WU Min-chen2, LI Jian-fang3
1. China-UK-NYNU-RRes Joint Laboratory, Nanyang Normal University, Nanyang 473061, China;
2. Wuxi Medical School, Jiangnan University, Wuxi 214122, China;
3. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
 全文: PDF(1273 KB)   HTML
摘要:

生物催化是指将酶或生物有机体用于有用的化学转化的过程,在人们对传统化学催化的环境影响抱有忧虑的情况下,生物催化提供了一种有吸引力的选择。在过去的几十年里,对生物催化剂的研究每出现一次大的进步,生物催化的发展就会出现一次高潮。因此,生物催化剂的发现与改造已成为当今研究的热点。宏基因组文库技术的出现克服了许多微生物不可培养的障碍,人们能够从自然资源中获得丰富的潜在的生物催化剂。而基于理性设计的分子改造技术的发展,可以使得人们对潜在的生物催化剂进行快速而有效的改造以满足工业化生产的需求。随着生物催化剂发现与改造的手段不断进步,更多的优良生物催化剂得到了广泛的应用,生物催化在工业生产中也得到了更深入的应用。结合作者的研究工作,总结了生物催化剂发现与改良的一些研究进展,以为获得更多优良的、能够实现工业应用的生物催化剂奠定理论基础。

关键词: 生物催化剂宏基因组文库基因组挖矿分子改造理性设计    
Abstract:

Biocatalysis is the process of applying enzymes or biological organisms in useful chemical conversion. In the context of concerns about the environmental aspects of the traditional chemical catalysis, biocatalysis provides an attractive alternative. In the past few decades, with a great progress on the study of biocatalysts, there will relevantly be a development wave on biocatalysis. So, the discovery and protein engineering of biocatalysts are becoming a hotspot in current researches. The emergence of the metagenomic library technology overcomes the barriers that many microorganism can not be cultured, hence more and more potential biocatalysts can be gained from natural resources. Owing to the development of the molecular modification technologies based on the rational design, rapid and efficient protein engineering of potential biocatalysts can be done to meet the need of industrial production. With the progress of the discovery and protein engineering method of biocatalysts, more and more excellent biocatalysts have been widely used, and biocatalysis have further application in the industrial production. The latest progress on the discovery and protein engineering of biocatalysts based on the research work were summarized to provide the theoretical foundation for getting more excellent biocatalysts which can be applied on industrial scale.

Key words: Biocatalysts    Metagenomic library    Genome mining    Molecular modification    in silico design
收稿日期: 2014-07-03 出版日期: 2014-09-25
ZTFLH:  Q78  
基金资助:

国家自然科学基金资助项目(31271811)

通讯作者: 阚云超, 邬敏辰     E-mail: kanyunchao@163.com;biowmc@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.

TANG Cun-duo, SHI Hong-ling, TANG Qing-hai, JIAO Zhu-jing, KAN Yun-chao, WU Min-chen, LI Jian-fang. Recent Trends in Discovery and Protein Engineering of Biocatalysts. China Biotechnology, 2014, 34(9): 113-121.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140917        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I9/113


[1] Wang M, Si T, Zhao H. Biocatalyst development by directed evolution. Bioresource Technol, 2012, 115(0):117-125.

[2] Bornscheuer U T, Huisman G W, Kazlauskas R J, et al. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397):185-194.

[3] Gong J S, Lu Z M, Li H, et al. Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biot, 2013, 97(15):6603-6611.

[4] Bottcher D, Bornscheuer U T. Protein engineering of microbial enzymes. Curr Opin Microbiol, 2010, 13(3):274-282.

[5] Behrens G A, Hummel A, Padhi S K, et al. Discovery and protein engineering of biocatalysts for organic synthesis. Adv Synth Catal, 2011, 353(13):2191-2215.

[6] Davids T, Schmidt M, Bottcher D, et al. Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol, 2013, 17(2):215-220.

[7] Lee H S, Kwon K K, Kang S G, et al. Approaches for novel enzyme discovery from marine environments. Curr Opin Biotech, 2010, 21(3):353-357.

[8] Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol, 1998, 5(10):R245-R249.

[9] Craig J W, Chang F Y, Kim J H, et al. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol, 2010, 76(5):1633-1641.

[10] Daniel R. The metagenomics of soil. Nat Rev Micro, 2005, 3(6):470-478.

[11] Lorenz P, Eck J. Metagenomics and industrial applications. Nat Rev Micro, 2005, 3(6):510-516.

[12] 赵圣国, 王加启, 刘开朗, 等. 奶牛瘤胃微生物元基因组文库中脂肪酶的筛选与酶学性质. 生物工程学报, 2009, 25(6):869-874. Zhao SH G, Wang J Q, Liu K L, et al. Screening and characterization of lipase from a metagenome library of dairy rumen microflora. Chin J Biotech, 2009, 25(6): 869-874.

[13] Du J, Li L, Ding X, et al. Isolation and characterization of a novel cyanophycin synthetase from a deep-sea sediment metagenomic library. Appl Microbiol Biotechnol, 2013, 97(19):8619-8628.

[14] Zhang L, Fan Y, Zheng H, et al. Isolation and characterization of a novel endoglucanase from a Bursaphelenchus xylophilus metagenomic library. PLoS ONE, 2013, 8(12):e82437.

[15] Shao H, Xu L, Yan Y. Isolation and characterization of a thermostable esterase from a metagenomic library. J Ind Microbiol Biotechnol, 2013, 40(11):1211-1222.

[16] Rashamuse K, Ronneburg T, Sanyika W, et al. Metagenomic mining of feruloyl esterases from termite enteric flora. Appl Microbiol Biotechnol, 2014, 98(2):727-737.

[17] Wang F, Li F, Chen G, et al. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res, 2009, 164(6):650-657.

[18] Zhao S, Wang J, Bu D, et al. Novel glycoside hydrolases identified by screening a Chinese Holstein dairy cow rumen-derived metagenome library. Appl Environ Microbiol, 2010, 76(19):6701-6705.

[19] Nimchua T. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechn, 2012, 22(4):462-469.

[20] Lee C, Kibblewhite R, Wagschal K, et al. Isolation of α-glucuronidase enzyme from a rumen metagenomic library. Protein J, 2012, 31(3):206-211.

[21] Walter J, Mangold M, Tannock GW. Construction, analysis, and beta-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice. Appl Environ Microbiol, 2005, 71(5):2347-2354.

[22] Challis G L. Genome mining for novel natural product discovery. J Med Chem, 2008, 51(9):2618-2628.

[23] Furuya T, Kino K. Genome mining approach for the discovery of novel cytochrome P450 biocatalysts. Appl Microbiol Biotechnol, 2010, 86(4):991-1002.

[24] Zhu D, Mukherjee C, Biehl E R, et al. Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol, 2007, 129(4):645-650.

[25] Barriuso J, Prieto A, Martínez M J. Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics, 2013, 14:712.

[26] Fraaije M, Wu J, Heuts D H M, et al. Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Appl Microbiol Biotechnol, 2005, 66(4):393-400.

[27] Tang C D, Guo J, Wu M C, et al. Cloning and bioinformatics analysis of a novel acidophilic β-mannanase gene, Auman5A, from Aspergillus usamii YL-01-78. World J Microb Biot, 2011, 27(12):2921-2929.

[28] Shi H L, Yin X, Wu M C, et al. Cloning and bioinformatics analysis of an endoglucanase gene (Aucel12A) from Aspergillus usamii and its functional expression in Pichia pastoris. J Ind Microbiol Biotechnol, 2012, 39(2):347-357.

[29] Wang J Q, Zhang H M, Wu M C, et al. Cloning and sequence analysis of a novel xylanase gene, Auxyn10A, from Aspergillus usamii. Biotechnol Lett, 2011, 33(5):1029-1038.

[30] Zhao S G, Wu M C, Tang C D, et al. Cloning and bioinformatic analysis of an acidophilic β-mannanase gene, Anman5A, from Aspergillus niger LW-1. Appl Biochem Micro, 2012, 48(5):473-481.

[31] 郜赵伟, 张宇宏, 张伟. 微生物酶分子改造研究进展. 中国生物工程杂志, 2010, 30(1):98-103. Gao ZH W, Zhang Y H, Zhang W. Advances in molecular modification of microbial enzymes. China Biotechnology, 2010, 30(1): 98-103.

[32] 孔祥禄. 计算机辅助耐热性研究及分子设计. 广州: 华南理工大学, 2010. Kong X L. Computer-assisted Research on Heat-tolerance of Enzymes and Molecular Design. Guangzhou: South China University of Technology, 2010.

[33] Kim M S, Lei X. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl Microbiol Biotechnol, 2008, 79(1):69-75.

[34] 孔荣, 钮利喜, 袁静明. 易错PCR法定向进化D-海因酶的初步研究. 山西大学学报(自然科学版), 2006, 29:425-427. Kong R, Niu L X, Yuan J M. A preliminary study on the directed evolution of D-hydantoinase by error-prone PCR. Journal of Shanxi University (Nat Sci Ed), 2006, 29:425-427.

[35] Ang E L, Obbard J P, Zhao H. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis. FEBS J, 2007, 274(4):928-939.

[36] Gabor E M, Janssen D B. Increasing the synthetic performance of penicillin acylase PAS2 by structure-inspired semi-random mutagenesis. Protein Eng Des Sel, 2004, 17(7):571-579.

[37] Cho C M, Mulchandani A, Chen W. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol, 2004, 70(8):4681-4685.

[38] Shi C, Lu X, Ma C, et al. Enhancing the thermostability of a novel β-agarase AgaB through directed evolution. Appl Biochem Biotech, 2008, 151(1):51-59.

[39] Davoodi J, Wakarchuk W W, Carey P R, et al. Mechanism of stabilization of Bacillus circulans xylanase upon the introduction of disulfide bonds. Biophys Chem, 2007, 125(2-3):453-461.

[40] Fenel F, Leisola M, Jnis J, et al. A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-β-xylanase II. J Biotechnol, 2004, 108(2):137-143.

[41] Huang Y H, Huang C T, Hseu R S. Effects of dockerin domains on Neocallimastix frontalis xylanases. FEMS Microbiol Lett, 2005, 243(2):455-460.

[42] Sokkar P, Mohandass S, Ramachandran M. Multiple templates-based homology modeling enhances structure quality of AT1 receptor: validation by molecular dynamics and antagonist docking. J Mol Model, 2011, 17(7):1565-1577.

[43] Gao S J, Wang J Q, Wu M C, et al. Engineering hyperthermostability into a mesophilic family 11 xylanase from Aspergillus oryzae by in silico design of N-terminus substitution. Biotechnol Bioeng, 2013, 110(4):1028-1038.

[44] 田健. 计算机辅助分子设计提高蛋白质热稳定性的研究. 北京: 中国农业科学院, 2011. Tian J. Improvement of the Protein Thermal Stability by the Computer Aided Molecular Design. Beijing: Chinese Academy of Argicultural Sciences, 2011.

[45] Le Q A, Joo J C, Yoo Y J, et al. Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnol Bioeng, 2012, 109(4):867-876.

[46] 史红玲. 米曲霉木聚糖酶基因的克隆表达及耐热性改造. 无锡: 江南大学, 2012. Shi H L. Cloning, Expression of the Xylanase Gene from Aspergillus oryzae and its Thermostability Enhancement. Wuxi: Jiangnan University, 2012.

[47] Timmers L F, Ducati R G, Sanchez-Quitian Z A, et al. Combining molecular dynamics and docking simulations of the cytidine deaminase from Mycobacterium tuberculosis H37Rv. J Mol Model, 2012, 18(2):467-479.

[48] Christelle B, Eduardo Bde O, Latifa C, et al. Combined docking and molecular dynamics simulations to enlighten the capacity of Pseudomonas cepacia and Candida antarctica lipases to catalyze quercetin acetylation. J Biotechnol, 2011, 156(3):203-210.

[49] Tang C D, Li J F, Wei X H, et al. Fusing a carbohydrate-binding module into the Aspergillus usamii beta-mannanase to improve its thermostability and cellulose-binding capacity by in silico design. PloS One, 2013, 8(5):e64766.

[50] Li J F, Wei X H, Tang C D, et al. Directed modification of the Aspergillus usamii beta-mannanase to improve its substrate affinity by in silico design and site-directed mutagenesis. J Ind Microbiol Biotechnol, 2014, 41(4):693-700.

[1] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[2] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[3] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[4] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[5] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[6] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[7] 陈方,徐刚,杨立荣,吴坚平. 定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *[J]. 中国生物工程杂志, 2018, 38(9): 59-64.
[8] 唐存多,史红玲,马越,丁朋举,许建和,阚云超,姚伦广. 新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 30-37.
[9] 李继彬, 陈志, 陈华友. 腈水解酶克隆表达、固定化及分子改造的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 141-147.
[10] 贺霖伟, 刘璋敏, 冯雁, 崔莉. 谷氨酸依赖型氨基转移酶的高通量筛选方法及其应用[J]. 中国生物工程杂志, 2017, 37(8): 59-65.
[11] 唐存多,史红玲,焦铸锦,刘飞,许建和,阚云超,姚伦广. CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*[J]. 中国生物工程杂志, 2017, 37(12): 34-39.
[12] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.
[13] 郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.
[14] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[15] 产竹华, 刘洋, 苏玉斌, 单大鹏, 王水琦, 曾润颖. 深海低温脂肪酶基因工程菌LIP001发酵条件的优化[J]. 中国生物工程杂志, 2011, 31(04): 65-70.