Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (8): 46-54    DOI: 10.13523/j.cb.20160807
技术与方法     
技术与方法理性设计改造牛肠激酶的热稳定性
郭超1,2,3, 王志彦1,2,3, 甘一如1,2,3, 李丹1,2,3, 邓勇1,2,3, 于浩然1,2,3, 黄鹤1,2,3
1. 天津大学化工学院 天津 300072;
2. 系统生物工程教育部重点实验室 天津 300072;
3. 天津化学化工协同创新中心 天津 300072
Engineering Thermostability of Bovine Enterokinase by Rational Design Method
GUO Chao1,2,3, WANG Zhi-yan1,2,3, GAN Yi-ru1,2,3, LI Dan1,2,3, DENG Yong1,2,3, YU Hao-ran1,2,3, HUANG He1,2,3
1. Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China;
3. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
 全文: PDF(1378 KB)   HTML
摘要:

以牛肠激酶作为研究对象,利用理性设计的方法提高其热稳定性。首先通过分子动力学模拟软件Gromacs v 4.5.5,FlexService以及B-FITTER软件预测出了肠激酶的柔性区Fragment 64~69,Fragment 85~90;然后结合β-转角序列统计学信息以及引入位置原有的残基不参与形成氢键的原则,确立了3个突变位点S67P,R87P以及Y136P;通过Quik ChangeTM 定点突变的方法引入突变位点,并进行了酶热稳定性分析。结果表明,R87P突变体酶的失活半衰(t1/2)和T5010 较野生型分别提高了3.1 min和11.8℃,同时,动力学常数(Km/kcat)测定结果显示酶活未受到显著影响。该策略有潜力应用于其他工业酶分子的热稳定性改造,为推动生物酶的工业化应用奠定基础。

关键词: 热稳定性肠激酶理性设计脯氨酸β-转角    
Abstract:

The rational design method was applied to increase the thermostability of bovine enterokinase. Molecular dynamics software Gromacs v4.5.5, FlexService and B-FITTER were used to predict the flexibility profile of the bovine enterokinase structures. Fragment 64~69 and Fragment 85~90 were confirmed to represent the flexible region. Subsequently, β-turn sequence statistics and stereoscopic criteria of introducing proline were combined to pinpoint appropriate substitution sites by prolines. Finally, site-directed mutations (S67P, R87P and Y136P) were introduced within the fexible region using Quik ChangeTM method and the thermostability of wild-type and the enterokinase mutants were investigated. The result demonstrated that the half-life (t1/2) and half inactivation (T5010) temperature of the R87P mutant increased by 3.1 min and 11.8℃ when compared to that of the wild-type enzyme. Meanwhile, the catalytic efficiency (Km/kcat) of the R87P mutant enzyme remained nearly unchanged. This strategy has potential to be applied to engineer thermostability of other enzyme, which is beneficial for the wider application of biocatalysts in industry.

Key words: Prolines    Thermostability    Rational design method    Enterokinase    β-turn
收稿日期: 2016-01-06 出版日期: 2016-03-02
ZTFLH:  Q819  
基金资助:

国家自然科学基金(31470967)、国家科技重大专项(2011ZX09201-301-05;2014ZX09508006-002-002)资助项目

通讯作者: 黄鹤     E-mail: huang@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭超
甘一如
李丹
邓勇
于浩然
黄鹤

引用本文:

郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.

GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method. China Biotechnology, 2016, 36(8): 46-54.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160807        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I8/46

[1] Choi J M, Han S S, Kim H S. Industrial applications of enzyme biocatalysis. Current status and future aspects. Biotechnology Advances, 2015, 33(7):1443-1454.
[2] Eijsink V G, Bjørk A, Gåseidnes S, et al. Rational engineering of enzyme stability. Journal of Biotechnology, 2004, 113(1):105-120.
[3] Bornscheuer U T, Pohl M. Improved biocatalysts by directed evolution and rational protein design. Current Opinion in Chemical Biology, 2001, 5(2):137-143.
[4] Schweiker K L, Makhatadze G I. Protein stabilization by the rational design of surface charge-charge interactions. Protein Structure, Stability, and Interactions, 2009, 490:261-283.
[5] Yu H, Huang H. Engineering proteins for thermostability through rigidifying flexible sites. Biotechnology Advances, 2014, 32(2):308-315.
[6] Kamerzell T, Middaugh C. The complex inter-relationships between protein flexibility and stability. Journal of Pharmaceutical Sciences, 2008, 97(9):3494-3517.
[7] Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS:fast, flexible, and free. Journal of Computational Chemistry, 2005, 26(16):1701-1718.
[8] Reetz M T, Carballeira J D, Vogel A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angewandte Chemie International Edition, 2006, 45(46):7745-7751.
[9] Teilum K, Olsen J G, Kragelund B B. Functional aspects of protein flexibility. Cellular and Molecular Life Sciences, 2009, 66(14):2231-2247.
[10] Camps J, Carrillo O, Emperador A, et al. FlexServ:an integrated tool for the analysis of protein flexibility. Bioinformatics, 2009, 25(13):1709-1710.
[11] Hardy F, Vriend G, Veltman O, et al. Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. FEBS Letters, 1993, 317(1):89-92.
[12] Yu H, Zhao Y, Guo C, et al. The role of proline substitutions within flexible regions on thermostability of luciferase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2015, 1854(1):65-72.
[13] Watanabe K, Chishiro K, Kitamura K, et al. Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1, 6-glucosidase from Bacillus thermoglucosidasius KP1006. The Journal of Biological Chemistry, 1991, 266(36):24287-24294.
[14] Guruprasad K, Rajkumar S. Beta-and gamma-turns in proteins revisited:a new set of amino acid turn-type dependent positional preferences and potentials. Journal of Biosciences, 2000, 25(2):143-156.
[15] Trevino S R, Schaefer S, Scholtz J M, et al. Increasing protein conformational stability by optimizing β-turn sequence. Journal of Molecular Biology, 2007, 373(1):211-218.
[16] Fu H, Grimsley G R, Razvi A, et al. Increasing protein stability by improving beta-turns. Proteins:Structure, Function, and Bioinformatics, 2009, 77(3):491-498.
[17] Tan H, Wang J, Zhao Z K. Purification and refolding optimization of recombinant bovine enterokinase light chain overexpressed in Escherichia coli. Protein Expression and Purification, 2007, 56(1):40-47.
[18] Pepeliaev S, Krahulec J,?erný Z, et al. High level expression of human enteropeptidase light chain in Pichia pastoris. Journal of Biotechnology, 2011, 156(1):67-75.
[19] Niu L X, Li J Y, Ji X X, et al. Efficient expression and purification of recombinant human enteropeptidase light chain in Esherichia coli. Brazilian Archives of Biology and Technology, 2014, 58(2):216-221.
[20] Azhar M, Somashekhar R. Production and purification of recombinant enteropeptidase expressed in an insect-baculovirus cell system. Preparative Biochemistry and Biotechnology, 2015, 45(3):268-278.
[21] Kubitzki T, Noll T, Lütz S. Immobilisation of bovine enterokinase and application of the immobilised enzyme in fusion protein cleavage. Bioprocess and Biosystems Engineering, 2008, 31(3):173-182.
[22] Santana S D, Pina A S, Roque A C. Immobilization of enterokinase on magnetic supports for the cleavage of fusion proteins. Journal of Biotechnology, 2012, 161(3):378-382.
[23] Simeonov P, Berger-Hoffmann R, Hoffmann R, et al. Surface supercharged human enteropeptidase light chain shows improved solubility and refolding yield. Protein Engineering Design and Selection, 2011, 24(3):261-268.
[24] Zheng L, Baumann U, Reymond J L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Research, 2004, 32(14):e115.
[25] Scott W R, Hünenberger P H, Tironi I G, et al. The GROMOS biomolecular simulation program package. The Journal of Physical Chemistry A, 1999, 103(19):3596-3607.
[26] Emperador A, Carrillo O, Rueda M, et al. Exploring the suitability of coarse-grained techniques for the representation of protein dynamics. Biophysical Journal, 2008, 95(5):2127-2138.
[27] Atilgan A, Durell S, Jernigan R, et al. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophysical Journal, 2001, 80(1):505-515.
[28] Kovacs J A, Chacón P, Abagyan R. Predictions of protein flexibility:First-order measures. Proteins:Structure, Function, and Bioinformatics, 2004, 56(4):661-668.
[29] Teilum K, Olsen J G, Kragelund B B. Protein stability, flexibility and function. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2011, 1814(8):969-976.
[30] Tang K E, Dill K A. Native protein fluctuations:the conformational-motion temperature and the inverse correlation of protein flexibility with protein stability. Journal of Biomolecular Structure and Dynamics, 1998, 16(2):397-411.
[31] Radestock S, Gohlke H. Protein rigidity and thermophilic adaptation. Proteins:Structure, Function, and Bioinformatics, 2011, 79(4):1089-1108.
[32] Tian J, Wang P, Gao S, et al. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. FEBS Journal, 2010, 277(23):4901-4908.
[33] Joo J C, Pack S P, Kim Y H, et al. Thermostabilization of Bacillus circulans xylanase:computational optimization of unstable residues based on thermal fluctuation analysis. Journal of Biotechnology, 2011, 151(1):56-65.
[34] Kim H S, Le QAT, Kim Y H. Development of thermostable lipase B from Candida antarctica (CalB) through in silico design employing B-factor and RosettaDesign. Enzyme and Microbial Technology, 2010, 47(1):1-5.
[35] Fang Z, Zhou P, Chang F, et al. Structure-based rational design to enhance the solubility and thermostability of a bacterial laccase Lac15. Plos One, 2014, 9(7):1-6.

[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[3] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[4] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[5] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[6] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[7] 刘延娟, 李旭娟, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7): 115-123.
[8] 唐存多,史红玲,焦铸锦,刘飞,许建和,阚云超,姚伦广. CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*[J]. 中国生物工程杂志, 2017, 37(12): 34-39.
[9] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.
[10] 郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.
[11] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[12] 焦昀, 孔英俊, 高建萍, 康跻耀, 孙坤, 査圣华, 张贵锋, 王明林. 羟基化修饰对大鼠胶原热稳定性的影响研究[J]. 中国生物工程杂志, 2015, 35(11): 7-12.
[13] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[14] 徐小静, 安会灵, 陈宁美, 杨婧, 周宜君. 盐芥ThMSD基因在大肠杆菌中的表达及特性研究[J]. 中国生物工程杂志, 2013, 33(4): 74-79.
[15] 邓辉, 陈晟, 陈坚, 吴敬. T26P和A30P位点突变对Thermobifida fusca葡萄糖异构酶热稳定性及活性的影响[J]. 中国生物工程杂志, 2013, 33(10): 67-72.