Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (8): 80-88    DOI: 10.13523/j.cb.20160811
技术与方法     
基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计
虞晓丹1,2, 吴秀秀1,2, 姚冬生1,2, 刘大岭1,3, 谢春芳1,3
1. 暨南大学生物医药研究院 广州 510632;
2. 暨南大学微生物技术研究所 广州 510632;
3. 暨南大学生物工程系 广州 510632
Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation
YU Xiao-dan1,2, WU Xiu-xiu1,2, YAO Dong-sheng1,2, LIU Da-ling1,3, XIE Chun-fang1,3
1. National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China;
2. Institute of Microbial Technology, Jinan University, Guangzhou 510632, China;
3. Department of Bio-engineering, Jinan University, Guangzhou 510632, China
 全文: PDF(1415 KB)   HTML
摘要:

饲料用酶在饲喂过程中,不可避免地会受到消化道中蛋白酶的破坏而令其使用效率受到影响,因此,饲料酶的蛋白酶抗性是其十分重要的性质之一。基于酶反应原理与计算化学理论对Bacillus subtilis 168 β-1,4-内切木聚糖酶(XynA)的胰蛋白酶抗性进行理性设计,最终得到三个突变体——XynAR121C、XynAR121C/K98Q和XynAK39I。酶学性质分析显示XynAR121C和XynAR121C/K98Q与野生型(XynA)的最适反应温度均为60℃,XynAK39I为40℃;突变体酶与野生型酶的最适pH都是6.0;人工肠液(pH 6.8,10 mg/ml胰蛋白酶溶液)处理野生型及其突变体后,XynAR121C/K98Q和XynAR121C的残留酶活力均明显比野生型高,它们的半衰期分别是野生型的2.02倍和1.52倍,XynAK39I在胰蛋白酶溶液中的半衰期为90min,比野生型缩短了37 min。

关键词: 胰蛋白酶抗性理性设计木聚糖酶酶稳定性    
Abstract:

In the feeding process, the decomposition of the digestive tract proteases is one of the important reasons affecting the efficiency of feed enzymes. Therefore, the feed enzymes having protease resistance is a very important property. The rational design of protein modification with resistance to protease based on the method of the biocatalysis and computational chemistry was used, which has been established to improve Bacillus subtilis 168 1,4-β-endoxylanase with resistance to protease and to get the excellent properties. Single site mutation to R121 and K39 and double sites mutations to R121/K98 were utilized to get the fine properties of mutant enzymes XynAR121C, XynAR121C/K98Q and XynAK39I. Fortunately, the excellent properties were gotten finally. The optimal temperature of XynA, XynAR121C, XynAR121C/K98Q was 60℃,while XynAK39I was 40℃,and its temperature tolerance was lower than the wild type. The optimal pH of the wild and mutant enzymes was 6.0. During the treatment with simulated intestinal fluid (pH 6.8, 10mg/ml trypsin solution), the remained enzyme activity of mutants was much higher than the wild type. As for XynAR121C, its half-life period was 193 min, 1.52 times higher than XynA. As for XynAR121C/K98Q, its half-life period was 257 min, 2.02 times higher than XynA. As for XynAK39I, after incubation with simulated intestinal fluid at 40℃ for different time, its half-life period was 90 min, only 37min shorter than XynA.

Key words: Xylanase    Rational design    Trypsin-resistance    Enzyme stability
收稿日期: 2016-03-04 出版日期: 2016-08-25
ZTFLH:  Q819  
基金资助:

国家高技术研究发展计划(863计划)(2013AA102801),广东省省级科技计划项目(2013B090600141)资助项目

通讯作者: 谢春芳     E-mail: xiechunfang28@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.

YU Xiao-dan, WU Xiu-xiu, YAO Dong-sheng, LIU Da-ling, XIE Chun-fang. Trypsin-resistant Improvement of Bacillus subtilis β-1,4-endoxylanase by Rational Design Based on Molecular Structure Evaluation. China Biotechnology, 2016, 36(8): 80-88.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160811        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I8/80

[1] Pandey A, Benjamin S, Soccol C R, et al. The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem,1999,29(2):119-131.
[2] Wong K K, Tan L U, Saddler J N. Multiplicity of β-1, 4-xylanase in microorganism:functions and applications. Microbiol Rev, 1988, 52(3):305-317.
[3] 吕晓慧, 胡亚冬, 胡凤娟, 等. 基于易错PCR的假密环菌Armillariella tabescens MAN47β-甘露聚糖酶耐高温定向进化. 生物工程学报, 2009, 25(12):1900-1906. Lü X X, Hu Y D, Hu F J, et al. Directed evolution by error-prone PCR of Armillariella tabescens MAN47β-mannanase gene toward enhanced thermal resistance. Chin J Biotech, 2009, 25(12):1900-1906.
[4] Hirokawa K, Ichiyanagi A, Kajiyama N. Enhancement of thermostability of fungal deglycating enzymes by directed evolution. Appl Microbiol Biotechnol, 2008, 78(5):775-781.
[5] Trevizano L M, Ventorim R Z, de Rezende S T, et al. Thermostability improvement of Orpinomyces sp. xylanase by directed evolution. J Mol Catal B-Enzym, 2012, 81:12-18.
[6] Le Y L, Chen H Y, Zagursky R, et al. Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. DNA Res, 2013, 20(4):375-382.
[7] Lilian G S, Roberto V G, Enrique R P, et al. Site-directed mutagenesis and homology modeling indicate an important role of cysteine 439 in the stability of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. Biochimie, 2005, 87(12):1056-1064.
[8] Tanaka H, Okuno T, Moriyama S, et al. Acidophilic xylanase from Aureobasidium pullulans:efficient expression and secretion in Pichia pastoris and mutational analysis. J Biosci Bioeng, 2004, 98(5):338-343.
[9] Joo J C, Pack S P, Kim Y H, et al. Thermostabilization of Bacillus circulans xylanase:computational optimization of unstable residues based on thermal fluctuation analysis. J Biotechnol, 2011, 151(1):56-65.
[10] Al Balaa B, Brijs K, Gebruers K, et al. Xylanase XYL1p from Scytalidium acidophilum:site-directed mutagenesis and acidophilic adaptation. Bioresour Technol, 2009, 100(24):6465-6471.
[11] Zhang W M, Lei X G. Cumulative improvements of thermostability and pH-activity profile of Aspergillus niger PhyA phytase by site-directed mutagenesis. Appl Microbiol Biotechnol, 2008, 77(5):1033-1040.
[12] Ogola H J, Hashimoto N, Miyabe S, et al. Enhancement of hydrogen peroxide stability of a novel Anabaena sp. DyP-type peroxidase by site-directed mutagenesis of methionine residues. Appl Microbiol Biotechnol, 2010, 87(5):1727-1736.
[13] Li Y F, Hu F J, Wang X M, et al. A rational design for trypsin-resistant improvement of Armillariella tabescens β-mannanase MAN47 based on molecular structure evaluation. J Biotechnol, 2013, 163(4):401-407.
[14] 胡凤娟, 王旭曼, 刘大岭, 等. 具蛋白酶抗性的Armillariella tabescens β-甘露聚糖酶MAN47的分子定向改造. 中国生物工程杂志, 2011, 31(10):75-82. Hu F J, Wang X M, Liu D L, et al. Directional molecular rebuilding of β-mannanase MAN47 with trypsin-resistance from Armillariella tabescens. China Biotechnology, 2011, 31(10):75-82.
[15] Huber R, Bode W. Structural basis of the activation and action of trypsin. Acc Chem Res, 1978, 11(3):114-122.
[16] 夏涵, 府伟灵, 陈鸣, 等. 快速提取细菌DNA方法的研究. 现代预防医学, 2005, 32(5):571-573. Xia H, Fu W L, Chen M, et al. The research of rapid DNA extraction from bacteria. Modern Preventive Medicine, 2005, 32(5):571-573.
[17] 徐芳, 姚泉洪, 熊爱生, 等. 重叠延伸PCR技术及其在基因工程上的应用. 分子植物育种, 2006, 4(5):747-750. Xu F, Yao Q H, Xiong A S, et al. SOE PCR and its application in genetic engineering. Molecular Plant Breeding, 2006, 4(5):747-750.
[18] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31(3):426-428.

[1] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[2] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[3] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[4] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[5] 李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.
[6] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[7] 杨青, 汪斌, 王亚伟, 张华山, 熊海容, 张莉. 介导两种半纤维素酶分泌表达的信号肽比较[J]. 中国生物工程杂志, 2017, 37(8): 15-22.
[8] 唐存多,史红玲,焦铸锦,刘飞,许建和,阚云超,姚伦广. CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*[J]. 中国生物工程杂志, 2017, 37(12): 34-39.
[9] 郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.
[10] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.
[11] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[12] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[13] 李思佳, 王亚伟, 付正, 汪文俊, Ossi Turunen, 熊海容. 嗜热真菌木聚糖酶1YNA及其双硫键突变体在毕赤酵母中的表达[J]. 中国生物工程杂志, 2013, 33(3): 74-79.
[14] 何洁, 宿玲恰, 吴敬. 重组大肠杆菌产Streptomyces sp. FA1来源木聚糖酶的摇瓶发酵优化[J]. 中国生物工程杂志, 2013, 33(2): 41-46.
[15] 马名章, 侯春晓, 王谦, 张传亮, 刘建新, 翁晓燕. 谷物中蛋白类木聚糖酶抑制剂研究进展[J]. 中国生物工程杂志, 2011, 31(04): 129-133.