Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (12): 65-71    DOI: 10.13523/j.cb.20151210
技术与方法     
头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成
马晨露1, 唐存多1, 史红玲1, 王瑞2, 岳超1, 夏敏1, 邬敏辰2, 阚云超1
1. 南阳师范学院昆虫生物反应器河南省工程实验室 南阳 473061;
2. 江南大学无锡医学院 无锡 214122
Semi-rational Modification of Cephalosporin C Acylase and Biosynthesis of 7-ACA
MA Chen-lu1, TANG Cun-duo1, SHI Hong-ling1, WANG Rui2, YUE Chao1, XIA Min1, WU Min-chen2, KAN Yun-chao1
1. Henan Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University, Nanyang 473061, China;
2. Wuxi Medical School, Jiangnan University, Wuxi 214122, China
 全文: PDF  HTML
摘要:

CPC乙酰化酶是一步酶法制备7-ACA的关键酶,针对它的研究具有重大的经济价值。为了获得对CPC具有更高催化活性的CPC乙酰化酶,以Pseudomonas sp SE 83来源的Ⅲ型CPC乙酰化酶CA Ⅲ为亲本,借助分子对接的手段确定了它与CPC结合的关键氨基酸残基,并确定将这些关键氨基酸残基突变为侧链基团更小的氨基酸残基,对CA Ⅲ的编码基因利用多点定点突变试剂盒完成定点突变后借助pET32a质粒在E. coli BL21(DE3)中实现了可溶性表达,获得了对CPC催化活性更高的重组突变体reCA ⅢM,其比酶活为26.7 IU/mg,较原酶提高了3.44倍。此外,初步研究了利用reCA ⅢM进行一步酶法生产7-ACA的工艺,40 IU/g CPC的加酶量、25℃的条件下反应12 h,CPC的转化率和7-ACA的得率分别可达96.3%和63.4%,表明该酶具有良好的应用前景。CPC乙酰化酶的分子改造上取得的较为理想的结果,为该酶进一步的分子改造及应用奠定了坚实的基础,也为其它酶的分子改造提供了可资借鉴的经验。

关键词: 理性设计CPC乙酰化酶分子改造活性检测生物催化    
Abstract:

CPC acylases play a key role in producing 7-ACA by one-step enzymatic method, so its research is very important. In order to obtain the CPC acylase with higher catalytic activity, a type Ⅲ CPC acylase from Pseudomonas sp SE 83 was taken as parent. Some key amino acid residues of CAⅢ were determined using molecular docking approach, and substituted the residues with lesser side chains for those. Then, the coding gene of CAⅢ was site-directed mutagenesis by using Multi Site-Directed Mutagenesis Kit, it was expressed in E. coli BL21(DE3) by means of pET32a plasmid. The recombinant mutant reCAⅢM with higher catalytic activity towards CPC, its specific activity is 26.7 IU/mg, which improved by 3.44 folds to the parent. Moreover, its application in producing 7-ACA by one-step enzymatic method were preliminarily studied. With 40 IU/g CPC of enzyme dosage at 25℃ catalyzed for 12 h, the transformation rate of CPC and yield of 7-ACA were up to 96.3% and 63.4% respectively, which demonstated that this enzyme had a promising prospect in application. The ideal results on the CPC acylase molecular modification were obtained, and it laid a solid foundation for further molecular modification and application of this enzyme. In addition, this also provided referential experience for molecular modification of other enzymes.

Key words: Biocatalysis    Rational design    CPC acylase    Molecular modification    Activity assay
收稿日期: 2015-07-06 出版日期: 2015-12-22
ZTFLH:  Q819  
基金资助:

国家自然科学基金(31401989)、河南省高等学校重点科研项目计划(15A416008)资助项目

通讯作者: 邬敏辰, 阚云超     E-mail: kanyunchao@163.com;bioch@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马晨露
唐存多
史红玲
王瑞
岳超
夏敏
邬敏辰
阚云超

引用本文:

马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.

MA Chen-lu, TANG Cun-duo, SHI Hong-ling, WANG Rui, YUE Chao, XIA Min, WU Min-chen, KAN Yun-chao. Semi-rational Modification of Cephalosporin C Acylase and Biosynthesis of 7-ACA. China Biotechnology, 2015, 35(12): 65-71.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151210        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I12/65

[1] Biocatalytic production of semi-synthetic cephalosporins:process technology and integration. Tramper J, Beeftink HH, Janssen AEM, Ooijkaas LP, van Roon JL, Strubel M, Schron CGPH Synthesis of β-Lactam Antibiotics. Springer Netherlands, 2001:206-249.
[2] Pollegioni L, Rosini E, Molla G. Cephalosporin C acylase:dream and(/or) reality. Appl Microbiol Biot, 2013, 97(6):2341-2355.
[3] Sonawane V C. Enzymatic modifications of cephalosporins by cephalosporin ccylase and other enzymes. Crit Rev Biotechnol, 2006, 26(2):95-120.
[4] Pollegioni L, Molla G, Sacchi S, et al. Properties and applications of microbial D-amino acid oxidases:current state and perspectives. Appl Microbiol Biot, 2008, 78(1):1-16.
[5] 姚舜,罗晖,常雁红,等.一步酶法生产7-氨基头孢烷酸的研究进展.现代化工, 2013, 33(2):11-14. Yao S, Luo H, Chang Y H, et al. Research progress in one-step enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid. Modern Chemical Industry, 2013, 33(2):11-14.
[6] Wang Y, Yu H, Song W, et al. Overexpression of synthesized cephalosporin C acylase containing mutations in the substrate transport tunnel. J Biosci Bioeng, 2012, 113(1):36-41.
[7] Zhu X, Luo H, Chang Y, et al. Characteristic of immobilized cephalosporin C acylase and its application in one-step enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid. World J Microb Biot, 2011, 27(4):823-829.
[8] Li Y, Chen J, Jiang W, et al. In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. Eur J Biochem, 1999, 262(3):713-719.
[9] Aramori I, Fukagawa M, Tsumura M, et al. Cloning and nucleotide sequencing of new glutaryl 7-ACA and cephalosporin C acylase genes from Pseudomonas strains. J Ferment Bioeng, 1991, 72(4):232-243.
[10] Deshpande B S, Ambedkar S S, Shewale J G. Cephalosporin C acylase and penicillin V acylase formation by Aeromonas sp. ACY 95. World J Microb Biot, 1996, 12(4):373-378.
[11] Conti G, Pollegioni L, Molla G, et al. Strategic manipulation of an industrial biocatalyst-evolution of a cephalosporin C acylase. FEBS J, 2014, 281(10):2443-2455.
[12] Golden E, Paterson R, Tie W J, et al. Structure of a class Ⅲ engineered cephalosporin acylase:comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity. Biochem J, 2013, 451(2):217-226.
[13] Pollegioni L, Lorenzi S, Rosini E, et al. Evolution of an acylase active on cephalosporin C. Protein Sci, 2005, 14(12):3064-3076.
[14] Shin Y C, Jeon J Y, Jung K H, et al. Cephalosporin C acylase mutant and method for preparing 7-ACA using same. US Patent, 0207519A1, 2007.
[15] Li Q, Huang X, Zhu Y. Evaluation of active designs of cephalosporin C acylase by molecular dynamics simulation and molecular docking. J Mol Model, 2014, 20(7):2314.
[16] Xiao Y, Huo X, Qian Y, et al. Engineering of a CPC acylase using a facile pH indicator assay. J Ind Microbiol Biot, 2014, 41(11):1617-1625.
[17] 王颖秋,郑林冲,谢丽萍,等.基于易错PCR的头孢菌素C酰化酶的定向进化.中国医药工业杂志, 2013,4:344-347. Wang Y Q, Zhen L C, Xie L P, et al. Directed evolution of cephalosporin C acylase activity by error-prone PCR. Chinese Journal of Pharmaceuticals, 2013,4:344-347.
[18] 徐雪丽,张伟,刘艳,等.头孢菌素C酰化酶突变位点的研究.中国生物工程杂志, 2015,2:59-65. Xu X L, Zhang W, Liu Y, et al. Study on mutaions of cephalosporin C acylase. China Biotechnology, 2015,2:59-65.
[19] Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72:248-254.
[20] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227:680-685.
[21] Perez C, Pastor M, Ortiz A R, et al. Comparative binding energy analysis of HIV-1 protease inhibitors:incorporation of solvent effects and validation as a powerful tool in receptor-based drug design. J Med Chem, 1998, 41:836-852.
[22] Timmers L F, Ducati R G, Sanchez-Quitian Z A, et al. Combining molecular dynamics and docking simulations of the cytidine deaminase from Mycobacterium tuberculosis H37Rv. J Mol Model, 2012, 18(2):467-479.
[23] Liu Y, Gong G, Zhu C, et al. Environmentally safe production of 7-ACA by recombinant Acremonium chrysogenum. Curr Microbiol, 2010, 61(6):609-614.

[1] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[2] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[3] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[4] 胡艳红,龚雪梅,丁柳柳,高嵩,李婷婷. 利用短短芽孢杆菌进行酮还原酶CgKR2的高效表达与纯化 *[J]. 中国生物工程杂志, 2019, 39(8): 59-65.
[5] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[6] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[7] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[8] 陈方,徐刚,杨立荣,吴坚平. 定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *[J]. 中国生物工程杂志, 2018, 38(9): 59-64.
[9] 唐存多,史红玲,马越,丁朋举,许建和,阚云超,姚伦广. 新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 30-37.
[10] 李继彬, 陈志, 陈华友. 腈水解酶克隆表达、固定化及分子改造的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 141-147.
[11] 贺霖伟, 刘璋敏, 冯雁, 崔莉. 谷氨酸依赖型氨基转移酶的高通量筛选方法及其应用[J]. 中国生物工程杂志, 2017, 37(8): 59-65.
[12] 王冬冬, 张国利, 岳玉环, 吴广谋, 田园, 刘雨玲, 吉元刚, 王金鹏, 李建, 潘荣荣, 马洪圆. 抗A型产气荚膜梭菌α毒素全人源双价单链抗体的构建、表达及其活性的初步研究[J]. 中国生物工程杂志, 2017, 37(4): 18-25.
[13] 徐振宇, 任红艳, 毕延震, 郑新民, 李莉, 张佳兰. 单细胞PCR体系的建立及其在CRISPR/Cas9靶点活性检测中的应用[J]. 中国生物工程杂志, 2017, 37(2): 74-80.
[14] 唐存多,史红玲,焦铸锦,刘飞,许建和,阚云超,姚伦广. CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*[J]. 中国生物工程杂志, 2017, 37(12): 34-39.
[15] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.