Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (1): 32-40    DOI: 10.13523/j.cb.2312102
    
Analysis of the Development Trends of Life and Health Sciences and Technology
Li XU,Ruonan YANG,Yue WANG,Huilin SHI,Zhenqi LI,Chenqi JIN,Wei LI,Ping XU**()
Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health,Chinese Academy of Sciences, Shanghai 200031, China
Download: HTML   PDF(1082KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Life and health sciences and technology is one of the key areas that are most expected to achieve revolutionary breakthroughs in the new round of scientific and technological revolution and industrial transformation. Through the convergence and integration of disciplines and technologies, it has shown a new development trend, givenrise to new disciplines, new directions, and new frontiers, and created new subdivisions and growth points in the industry. In recent years, innovation in the field of life and health sciences and technology has been active, and major achievements in frontier areas such as gene editing, synthetic biology, life omics, regenerative medicine, and organoids have been intensively developed. Based on the in-depth analysis of the current development trends and frontier directions in the field of life and health sciences and technology, its future development prospects are discussed and the key layout direction is proposed to provide reference for the development of life and health sciences and technology innovation.



Key wordsLife health      Gene editing      Synthetic biology      Life omics      Organoids     
Received: 26 December 2023      Published: 04 February 2024
ZTFLH:  Q-1  
Cite this article:

Li XU, Ruonan YANG, Yue WANG, Huilin SHI, Zhenqi LI, Chenqi JIN, Wei LI, Ping XU. Analysis of the Development Trends of Life and Health Sciences and Technology. China Biotechnology, 2024, 44(1): 32-40.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2312102     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I1/32

[1]   Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science, 2022, 376(6588): 44-53.
doi: 10.1126/science.abj6987 pmid: 35357919
[2]   Hallast P, Ebert P, Loftus M, et al. Assembly of 43 human Y chromosomes reveals extensive complexity and variation. Nature, 2023, 621(7978): 355-364.
doi: 10.1038/s41586-023-06425-6
[3]   Liao W W, Asri M, Ebler J, et al. A draft human pangenome reference. Nature, 2023, 617(7960): 312-324.
doi: 10.1038/s41586-023-05896-x
[4]   Brinkerhoff H, Kang A S W, Liu J Q, et al. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science, 2021, 374(6574): 1509-1513.
doi: 10.1126/science.abl4381
[5]   Wang K F, Zhang S Y, Zhou X, et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nature Methods, 2023, DOI: 10.1038/s41592-023-02021-8.
doi: 10.1038/s41592-023-02021-8
[6]   Mund A, Coscia F, Kriston A, et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nature Biotechnology, 2022, 40(8): 1231-1240.
doi: 10.1038/s41587-022-01302-5 pmid: 35590073
[7]   Rappez L, Stadler M, Triana S, et al. SpaceM reveals metabolic states of single cells. Nature Methods, 2021, 18(7): 799-805.
doi: 10.1038/s41592-021-01198-0 pmid: 34226721
[8]   Deng Y X, Bartosovic M, Kukanja P, et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science, 2022, 375(6581): 681-686.
doi: 10.1126/science.abg7216
[9]   Deng Y X, Bartosovic M, Ma S, et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature, 2022, 609(7926): 375-383.
doi: 10.1038/s41586-022-05094-1
[10]   Payne A C, Chiang Z D, Reginato P L, et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science, 2021, 371(6532): eaay3446.
doi: 10.1126/science.aay3446
[11]   Zhang D, Deng Y X, Kukanja P, et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature, 2023, 616(7955): 113-122.
doi: 10.1038/s41586-023-05795-1
[12]   Vicari M, Mirzazadeh R, Nilsson A, et al. Spatial multimodal analysis of transcriptomes and metabolomes in tissues. Nature Biotechnology, 2023, DOI: 10.1038/s41587-023-01937-y.
doi: 10.1038/s41587-023-01937-y
[13]   Ben-Chetrit N, Niu X, Swett A D, et al. Integration of whole transcriptome spatial profiling with protein markers. Nature Biotechnology, 2023, 41(6): 788-793.
doi: 10.1038/s41587-022-01536-3 pmid: 36593397
[14]   Wolf J, Rasmussen D K, Sun Y J, et al. Liquid-biopsy proteomics combined with AI identifies cellular drivers of eye aging and disease in vivo. Cell, 2023, 186(22): 4868-4884, e12.
doi: 10.1016/j.cell.2023.09.012
[15]   Vermeulen C, Pagès-Gallego M, Kester L, et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature, 2023, 622(7984): 842-849.
doi: 10.1038/s41586-023-06615-2
[16]   Allesøe R L, Lundgaard A T, Hernández Medina R, et al. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models. Nature Biotechnology, 2023, 41(3): 399-408.
doi: 10.1038/s41587-022-01520-x pmid: 36593394
[17]   Li J M, Xiong M Z, Fu X H, et al. Determining a multimodal aging clock in a cohort of Chinese women. Med, 2023, 4(11): 825-848, e13.
doi: 10.1016/j.medj.2023.06.010
[18]   Shalon D, Culver R N, Grembi J A, et al. Profiling the human intestinal environment under physiological conditions. Nature, 2023, 617(7961): 581-591.
doi: 10.1038/s41586-023-05989-7
[19]   Thuronyi B W, Koblan L W, Levy J M, et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nature Biotechnology, 2019, 37(9): 1070-1079.
doi: 10.1038/s41587-019-0193-0 pmid: 31332326
[20]   Gaudelli N M, Komor A C, Rees H A, et al. Programmable base editing of AoT to GoC in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464-471.
doi: 10.1038/nature24644
[21]   Cox D B T, Gootenberg J S, Abudayyeh O O, et al. RNA editing with CRISPR-Cas13. Science, 2017, 358(6366): 1019-1027.
doi: 10.1126/science.aaq0180 pmid: 29070703
[22]   Abudayyeh O O, Gootenberg J S, Franklin B, et al. A cytosine deaminase for programmable single-base RNA editing. Science, 2019, 365(6451): 382-386.
doi: 10.1126/science.aax7063 pmid: 31296651
[23]   Jiang T T, Zhang X O, Weng Z P, et al. Deletion and replacement of long genomic sequences using prime editing. Nature Biotechnology, 2022, 40(2): 227-234.
doi: 10.1038/s41587-021-01026-y
[24]   Choi J, Chen W, Suiter C C, et al. Precise genomic deletions using paired prime editing. Nature Biotechnology, 2022, 40(2): 218-226.
doi: 10.1038/s41587-021-01025-z
[25]   Yuan Q C, Gao X. Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nature Communications, 2022, 13(1): 2771.
doi: 10.1038/s41467-022-30514-1 pmid: 35589728
[26]   Anzalone A V, Gao X D, Podracky C J, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nature Biotechnology, 2022, 40(5): 731-740.
doi: 10.1038/s41587-021-01133-w
[27]   Vertex. Vertex and CRISPR therapeutics announce authorization of the first CRISPR/Cas9 gene-edited therapy, CASGEVYTM (exagamglogene autotemcel), by the United Kingdom MHRA for the treatment of sickle cell disease and transfusion-dependent beta thalassemia. [2023-11-16]. https://news.vrtx.com/news-releases/news-release-details/vertex-and-crispr-therapeutics-announce-authorization-first.
[28]   Thi Nhu Thao T, Labroussaa F, Ebert N, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature, 2020, 582(7813): 561-565.
doi: 10.1038/s41586-020-2294-9
[29]   Hsieh C L, Goldsmith J A, Schaub J M, et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science, 2020, 369(6510): 1501-1505.
doi: 10.1126/science.abd0826
[30]   Cao L X, Goreshnik I, Coventry B, et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370(6515): 426-431.
doi: 10.1126/science.abd9909
[31]   Stokes J M, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell, 2020, 180(4): 688-702, e13.
doi: S0092-8674(20)30102-1 pmid: 32084340
[32]   Liu G, Catacutan D B, Rathod K, et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nature Chemical Biology, 2023, 19(11): 1342-1350.
doi: 10.1038/s41589-023-01349-8
[33]   Hie B L, Shanker V R, Xu D, et al. Efficient evolution of human antibodies from general protein language models. Nature Biotechnology, 2023,DOI: 10.1038/s41587-023-01763-2.
doi: 10.1038/s41587-023-01763-2
[34]   Quijano-Rubio A, Yeh H W, Park J, et al. De novo design of modular and tunable protein biosensors. Nature, 2021, 591(7850): 482-487.
doi: 10.1038/s41586-021-03258-z
[35]   Herud-Sikimić O, Stiel A C, Kolb M, et al. A biosensor for the direct visualization of auxin. Nature, 2021, 592(7856): 768-772.
doi: 10.1038/s41586-021-03425-2
[36]   Srinivasan P, Smolke C D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature, 2020, 585(7826): 614-619.
doi: 10.1038/s41586-020-2650-9
[37]   Zhang J, Hansen L G, Gudich O, et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature, 2022, 609(7926): 341-347.
doi: 10.1038/s41586-022-05157-3
[38]   Jan M, Scarfò I, Larson R C, et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Science Translational Medicine, 2021, 13(575): eabb6295.
doi: 10.1126/scitranslmed.abb6295
[39]   Hernandez-Lopez R A, Yu W, Cabral K A, et al. T cell circuits that sense antigen density with an ultrasensitive threshold. Science, 2021, 371(6534): 1166-1171.
doi: 10.1126/science.abc1855 pmid: 33632893
[40]   Kreitz J, Friedrich M J, Guru A, et al. Programmable protein delivery with a bacterial contractile injection system. Nature, 2023, 616(7956): 357-364.
doi: 10.1038/s41586-023-05870-7
[41]   Canale F P, Basso C, Antonini G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature, 2021, 598(7882): 662-666.
doi: 10.1038/s41586-021-04003-2
[42]   Nick J A, Dedrick R M, Gray A L, et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 2022, 185(11): 1860-1874, e12.
doi: 10.1016/j.cell.2022.04.024
[43]   Chen Y E, Bousbaine D, Veinbachs A, et al. Engineered skin bacteria induce antitumor T cell responses against melanoma. Science, 2023, 380(6641): 203-210.
doi: 10.1126/science.abp9563 pmid: 37053311
[44]   Lin Z M, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 2023, 379(6637): 1123-1130.
doi: 10.1126/science.ade2574 pmid: 36927031
[45]   Bileschi M L, Belanger D, Bryant D H, et al. Using deep learning to annotate the protein universe. Nature Biotechnology, 2022, 40(6): 932-937.
doi: 10.1038/s41587-021-01179-w
[46]   Belanger D, Colwell L J. Hallucinating functional protein sequences. Nature Biotechnology, 2023, 41(8): 1073-1074.
doi: 10.1038/s41587-022-01634-2
[47]   Rives A, Meier J, Sercu T, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2016239118.
[48]   Dauparas J, Anishchenko I, Bennett N, et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science, 2022, 378(6615): 49-56.
doi: 10.1126/science.add2187 pmid: 36108050
[49]   Wang J, Lisanza S, Juergens D, et al. Scaffolding protein functional sites using deep learning. Science, 2022, 377(6604): 387-394.
doi: 10.1126/science.abn2100 pmid: 35862514
[50]   Wicky B I M, Milles L F, Courbet A, et al. Hallucinating symmetric protein assemblies. Science, 2022, 378(6615): 56-61.
doi: 10.1126/science.add1964 pmid: 36108048
[51]   FDA. Artificial intelligence and machine learning (AI/ML)-enabled medical devices. [2023-10-19]. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices?utm_medium=email&utm_source=govdelivery#resources.
[52]   Bouffi C, Wikenheiser-Brokamp K A, Chaturvedi P, et al. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nature Biotechnology, 2023, 41(6): 824-831.
doi: 10.1038/s41587-022-01558-x pmid: 36702898
[53]   Gabriel E, Albanna W, Pasquini G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28(10): 1740-1757, e8.
doi: 10.1016/j.stem.2021.07.010 pmid: 34407456
[54]   Amadei G, Handford C E, Qiu C X, et al. Embryomodel completes gastrulation to neurulation and organogenesis. Nature, 2022, 610(7930): 143-153.
doi: 10.1038/s41586-022-05246-3
[55]   Esfahani M S, Hamilton E G, Mehrmohamadi M, et al. Inferring gene expression from cell-free DNA fragmentation profiles. Nature Biotechnology, 2022, 40(4): 585-597.
doi: 10.1038/s41587-022-01222-4 pmid: 35361996
[56]   Fedyuk V, Erez N, Furth N, et al. Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nature Biotechnology, 2023, 41(2): 212-221.
doi: 10.1038/s41587-022-01447-3
[57]   Mougiakakos D, Krönke G, Völkl S, et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. The New England Journal of Medicine, 2021, 385(6): 567-569.
doi: 10.1056/NEJMc2107725 pmid: 34347960
[58]   Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature, 2020, 583(7814): 127-132.
doi: 10.1038/s41586-020-2403-9
[59]   Rurik J G, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury. Science, 2022, 375(6576): 91-96.
doi: 10.1126/science.abm0594 pmid: 34990237
[60]   Williams J Z, Allen G M, Shah D, et al. Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science, 2020, 370(6520): 1099-1104.
doi: 10.1126/science.abc6270 pmid: 33243890
[61]   Lajoie M J, Boyken S E, Salter A I, et al. Designed protein logic to target cells with precise combinations of surface antigens. Science, 2020, 369(6511): 1637-1643.
doi: 10.1126/science.aba6527 pmid: 32820060
[62]   Tousley A M, Rotiroti M C, Labanieh L, et al. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature, 2023, 615(7952): 507-516.
doi: 10.1038/s41586-023-05778-2
[63]   Balboa D, Barsby T, Lithovius V, et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nature Biotechnology, 2022, 40(7): 1042-1055.
doi: 10.1038/s41587-022-01219-z pmid: 35241836
[64]   Baloh R H, Johnson J P, Avalos P, et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nature Medicine, 2022, 28(9): 1813-1822.
doi: 10.1038/s41591-022-01956-3 pmid: 36064599
[65]   Fumagalli F, Calbi V, Sora M G N, et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a non-randomised, open-label, phase 1/ 2 trial and expanded access. Lancet, 2022, 399(10322): 372-383.
doi: 10.1016/S0140-6736(21)02017-1
[66]   Dolgin E. Diabetes cell therapies take evasive action. Nature Biotechnology, 2022, 40(3): 291-295.
doi: 10.1038/s41587-022-01246-w
[67]   Qiu Y C, O’Neill N, Maffei B, et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science, 2022, 378(6619): 523-532.
doi: 10.1126/science.abq6656 pmid: 36378958
[68]   Chen Y F, Hong Z X, Wang J Y, et al. Circuit-specific gene therapy reverses core symptoms in a primate Parkinson’s disease model. Cell, 2023, 186(24): 5394-5410, e18.
doi: 10.1016/j.cell.2023.10.004
[69]   Squair J W, Milano M, de Coucy A, et al. Recovery of walking after paralysis by regenerating characterized neurons to their natural target region. Science, 2023, 381(6664): 1338-1345.
doi: 10.1126/science.adi6412 pmid: 37733871
[70]   Intellia Therapeutics. Intellia therapeutics announces FDA clearance of investigational new drug (IND) application to initiate a pivotal phase 3 trial of NTLA-2001 for the treatment of transthyretin (ATTR) amyloidosis with cardiomyopathy. [2023-10-18]. https://www.intelliatx.com/our-pipeline.
[71]   Desai A S, Webb D J, Taubel J, et al. Zilebesiran, an RNA interference therapeutic agent for hypertension. The New England Journal of Medicine, 2023, 389(3): 228-238.
doi: 10.1056/NEJMoa2208391 pmid: 37467498
[72]   Mummery C J, Börjesson-Hanson A, Blackburn D J, et al. Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nature Medicine, 2023, 29(6): 1437-1447.
doi: 10.1038/s41591-023-02326-3
[73]   Park J S, Gazzaniga F S, Wu M, et al. Targeting PD-L2-RGMb overcomes microbiome-related immunotherapy resistance. Nature, 2023, 617(7960): 377-385.
doi: 10.1038/s41586-023-06026-3
[74]   Diwakar D, Dzutsev Amiran K, McCulloch John A, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science, 2021, 371(6529): 595-602.
doi: 10.1126/science.abf3363 pmid: 33542131
[75]   Baruch E N, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science, 2021, 371(6529): 602-609.
doi: 10.1126/science.abb5920 pmid: 33303685
[76]   Routy B, Lenehan J G, Miller W H Jr, et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nature Medicine, 2023, 29(8): 2121-2132.
doi: 10.1038/s41591-023-02453-x pmid: 37414899
[77]   Zhao W S, Lei J, Ke S B, et al. Fecal microbiota transplantation plus tislelizumab and fruquintinib in refractory microsatellite stable metastatic colorectal cancer: an open-label, single-arm, phase II trial (RENMIN-215). eClinicalMedicine, 2023, 66: 102315.
doi: 10.1016/j.eclinm.2023.102315
[78]   Federici S, Kredo-Russo S, Valdés-Mas R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell, 2022, 185(16): 2879-2898.e24.
doi: 10.1016/j.cell.2022.07.003 pmid: 35931020
[79]   Ichikawa M, Nakamoto N, Kredo-Russo S, et al. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nature Communications, 2023, 14(1): 3261.
doi: 10.1038/s41467-023-39029-9
[80]   Kviatcovsky D, Valdés-Mas R, Federici S, et al. Phage therapy in noncommunicable diseases. Science, 2023, 382(6668): 266-267.
doi: 10.1126/science.adh2718 pmid: 37856612
[81]   Ni Y Q, Qian L L, Siliceo S L, et al. Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations. Cell Metabolism, 2023, 35(9): 1530-1547, e8.
doi: 10.1016/j.cmet.2023.08.002 pmid: 37673036
[82]   Chen R Y, Mostafa I, Hibberd M C, et al. A microbiota-directed food intervention for undernourished children. The New England Journal of Medicine, 2021, 384(16): 1517-1528.
doi: 10.1056/NEJMoa2023294 pmid: 33826814
[1] Xianhao XU, Long LIU, Jian CHEN. Synthetic Biology and Future Food[J]. China Biotechnology, 2024, 44(1): 61-71.
[2] Yujuan LI, Xiongfei FU, Xianen ZHANG. A Brief Overview of Synthetic Biology[J]. China Biotechnology, 2024, 44(1): 52-60.
[3] ZUO Kun-lan, ZOU Shi-shi, WU Zong-zhen, GUO Yuan-yuan, XU Yan-long, LIU Huan. Biosafety Risks and Countermeasures of Pathogen Related Synthetic Biology[J]. China Biotechnology, 2023, 43(9): 120-130.
[4] HONG Xia, TIAN Kai-ren, QIAO Jian-jun, LI Yan-ni. Application Progress of Genetically Encoded Biosensors in Microbial Cell Factory[J]. China Biotechnology, 2023, 43(9): 62-76.
[5] TANG Zi-hui, ZHONG Chang, DUAN Yan-li, MA Rui-yu, ZHOU Ping. Advances in the Construction and Application of Bone Organoids[J]. China Biotechnology, 2023, 43(8): 11-19.
[6] ZHU Xiang, ZHANG Jing-yin, WANG Li-rui. Research and Applications of Human Liver Organoids: Progress and Developments[J]. China Biotechnology, 2023, 43(8): 20-29.
[7] SHI Jin, LIU Ke, DING Jun-ying. Application and Prospects of Lung Organoid Models in the Study of Infectious Lung Diseases[J]. China Biotechnology, 2023, 43(8): 30-37.
[8] XIN Yuan, TIAN Kai-ren, QIAO Jian-jun, CAIYIN Qing-ge-le. Gene Editing Tools Based on CRISPR/Cas System and Their Improvement Strategies[J]. China Biotechnology, 2023, 43(8): 72-85.
[9] Jia-wen LI, Yu-xuan FAN, Fu-li LI, Zhao-hui ZHANG, Shi-an WANG. Ide.pngication of Short Peptides from Oleosin for Lipid Droplet Localization in Xanthophyllomyces dendrorhous[J]. China Biotechnology, 2023, 43(7): 36-43.
[10] FENG Xue-jiao, HENG Chao, YU Xin-yu, WANG Jun-shu. Market Analysis and Prospect of Gene Therapy Industry[J]. China Biotechnology, 2023, 43(6): 102-112.
[11] FU Meng-meng, SU Dan-dan, ZUO Kun-lan, WU Zong-zhen, LI Si-si, XU Yan-long, LIU Huan. Biosafety Risks of Synthetic Biology Related to Human Immunity and The Countermeaseures[J]. China Biotechnology, 2023, 43(6): 125-132.
[12] LI Yu-tong, CUI Tian-qi, ZHANG Hai-lin, YU Guang-le, LUAN Ji, WANG Hai-long. Research Advances in Tumor-targeting Bacteria Escherichia coli Nissle 1917 in Cancer Therapy[J]. China Biotechnology, 2023, 43(6): 54-68.
[13] YANG Yi-ying, LI Xiao-le, LI Zi-long, LI Qiu-yuan, CHEN Wei, YIN Shou-liang. Application of the Efficient Counter-selection Method in Gene Deletion of Microorganism[J]. China Biotechnology, 2023, 43(4): 101-111.
[14] LIU Ting-ting, ZHANG Ping, ZHANG Yue. Regulation Role of Light-controlled Expression Systems in Synthetic Biology[J]. China Biotechnology, 2023, 43(4): 92-100.
[15] NING Jun-tao, ZOU Shi-shi, ZUO Kun-lan, WU Zong-zhen, Li Jing, XU Yan-long, LIU Huan. Biosafety Risks and Countermeasures of Active Substance in Synthesis Biology[J]. China Biotechnology, 2023, 43(2/3): 180-189.