Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (8): 11-19    DOI: 10.13523/j.cb.2302004
    
Advances in the Construction and Application of Bone Organoids
TANG Zi-hui1,ZHONG Chang1,DUAN Yan-li2,MA Rui-yu1,ZHOU Ping1,**()
1 School of Stomatology, Lanzhou University, Lanzhou 730000, China
2 The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
Download: HTML   PDF(646KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bone diseases, such as osteoporosis and osteoarthritis, have become a serious human health hazard, making it imperative to further understand the pathogenesis of related diseases and develop more effective treatments. Due to the limitations of conventional research methods such as two-dimensional cell culture and animal experiments, the organoid technology that emerged in recent years has attracted tremendous attention. As self-organized 3D clusters derived from stem cells, organoids can recapitulate the complex structure and biological function of tissues or organs in vitro. Until now, bone organoids generated from mesenchymal stem cells, pluripotent stem cells and other cell sources have been gradually established, which not only provides an excellent platform for disease modeling, drug screening as well as fundamental research of physiology and pathology, but also raises new hope for repairing bone defects. This review summarizes the construction and main applications of various bone organoid models. The challenges faced by organoid cultivation and future development prospects are also discussed, so as to provide reference for the construction and biomedical application of bone organoids with more perfect structure and functions.



Key wordsBone organoids      Disease modeling      Drug screening      Regenerative medicine     
Received: 03 February 2023      Published: 05 September 2023
ZTFLH:  Q819  
Cite this article:

TANG Zi-hui, ZHONG Chang, DUAN Yan-li, MA Rui-yu, ZHOU Ping. Advances in the Construction and Application of Bone Organoids. China Biotechnology, 2023, 43(8): 11-19.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2302004     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I8/11

Fig.1 Construction and application of bone organoids
[1]   Johnston C B, Dagar M. Osteoporosis in older adults. The Medical Clinics of North America, 2020, 104(5): 873-884.
doi: S0025-7125(20)30056-0 pmid: 32773051
[2]   Hunter D J, Bierma-Zeinstra S. Osteoarthritis. Lancet (London, England), 2019, 393(10182): 1745-1759.
doi: 10.1016/S0140-6736(19)30417-9
[3]   Duval K, Grover H, Han L H, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda, Md), 2017, 32(4): 266-277.
[4]   Samvelyan H J, Hughes D, Stevens C, et al. Models of osteoarthritis: relevance and new insights. Calcified Tissue International, 2021, 109(3): 243-256.
doi: 10.1007/s00223-020-00670-x
[5]   占华松, 陈跃平, 章晓云. 骨组织工程技术治疗感染性骨缺损: 优势与问题. 中国组织工程研究, 2019, 23(30): 4848-4854.
[5]   Zhan H S, Chen Y P, Zhang X Y. Bone tissue engineering in infectious bone defect: advantages and problems. Chinese Journal of Tissue Engineering Research, 2019, 23(30): 4848-4854.
[6]   Kim S, Cho A N, Min S, et al. Organoids for advanced therapeutics and disease models. Advanced Therapeutics, 2019, 2(1): 1800087.
[7]   Sato T, Vries R G, Snippert H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244): 262-265.
doi: 10.1038/nature07935
[8]   Yin X L, Mead B, Safaee H, et al. Engineering stem cell organoids. Cell Stem Cell, 2016, 18(1): 25-38.
doi: 10.1016/j.stem.2015.12.005 pmid: 26748754
[9]   Chen S S, Chen X, Geng Z, et al. The horizon of bone organoid: a perspective on construction and application. Bioactive Materials, 2022, 18: 15-25.
doi: 10.1016/j.bioactmat.2022.01.048 pmid: 35387160
[10]   Fu Y, Karbaat L, Wu L, et al. Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Engineering Part B, Reviews, 2017, 23(6): 515-528.
doi: 10.1089/ten.teb.2016.0365
[11]   Duchamp de Lageneste O, Julien A, Abou-Khalil R, et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nature Communications, 2018, 9(1): 1-15.
doi: 10.1038/s41467-017-02088-w
[12]   Yang Y H K. Aging of mesenchymal stem cells: implication in regenerative medicine. Regenerative Therapy, 2018, 9: 120-122.
doi: 10.1016/j.reth.2018.09.002
[13]   Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.
doi: 10.1016/j.cell.2006.07.024 pmid: 16904174
[14]   Kim W, Gwon Y, Park S, et al. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioactive Materials, 2023, 19: 50-74.
doi: 10.1016/j.bioactmat.2022.03.039 pmid: 35441116
[15]   Velasco V, Ali Shariati S, Esfandyarpour R. Microtechnology-based methods for organoid models. Microsystems & Nanoengineering, 2020, 6: 76.
[16]   Takebe T, Sekine K, Kimura M, et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Reports, 2017, 21(10): 2661-2670.
doi: S2211-1247(17)31625-X pmid: 29212014
[17]   冯晓莹, 孟倩, 陈巍, 等. 类器官芯片在医学研究中的应用进展. 中国生物工程杂志, 2022, 42(Z1): 112-118.
[17]   Feng X Y, Meng Q, Chen W, et al. Application progress of organoid-on-a-chip in medical research. China Biotechnology, 2022, 42(Z1): 112-118.
[18]   Parihar A, Pandita V, Khan R. 3D printed human organoids: high throughput system for drug screening and testing in current COVID-19 pandemic. Biotechnology and Bioengineering, 2022, 119(10): 2669-2688.
doi: 10.1002/bit.v119.10
[19]   Capeling M M, Czerwinski M, Huang S, et al. Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Reports, 2019, 12(2): 381-394.
doi: S2213-6711(18)30520-4 pmid: 30612954
[20]   Cruz-Acuña R, Quirós M, Farkas A E, et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nature Cell Biology, 2017, 19(11): 1326-1335.
doi: 10.1038/ncb3632 pmid: 29058719
[21]   Giger S, Hofer M, Miljkovic-Licina M, et al. Microarrayed human bone marrow organoids for modeling blood stem cell dynamics. APL Bioengineering, 2022, 6(3): 036101.
[22]   Cheng Y H, Dong J C, Bian Q. Small molecules for mesenchymal stem cell fate determination. World Journal of Stem Cells, 2019, 11(12): 1084-1103.
doi: 10.4252/wjsc.v11.i12.1084
[23]   Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002, 108(1): 17-29.
doi: 10.1016/s0092-8674(01)00622-5 pmid: 11792318
[24]   Reible B, Schmidmaier G, Moghaddam A, et al. Insulin-like growth factor-1 as a possible alternative to bone morphogenetic protein-7 to induce osteogenic differentiation of human mesenchymal stem cells in vitro. International Journal of Molecular Sciences, 2018, 19(6): 1674.
doi: 10.3390/ijms19061674
[25]   Yang C, Tibbitt M W, Basta L, et al. Mechanical memory and dosing influence stem cell fate. Nature Materials, 2014, 13(6): 645-652.
doi: 10.1038/nmat3889 pmid: 24633344
[26]   Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337-342.
doi: 10.1038/nature01658
[27]   Kandarakov O, Belyavsky A, Semenova E. Bone marrow niches of hematopoietic stem and progenitor cells. International Journal of Molecular Sciences, 2022, 23(8): 4462.
doi: 10.3390/ijms23084462
[28]   Seita J, Weissman I L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2(6): 640-653.
doi: 10.1002/wsbm.86 pmid: 20890962
[29]   Akiva A, Melke J, Ansari S, et al. An organoid for woven bone. Advanced Functional Materials, 2021, 31(17): 2010524.
[30]   Zhang J H, Griesbach J, Ganeyev M, et al. Long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Biofabrication, 2022, 14(3): 035018.
doi: 10.1088/1758-5090/ac73b9
[31]   Nilsson Hall G, Mendes L F, Gklava C, et al. Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo long bone healing. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2019, 7(2): 1902295.
[32]   Long T W, Luís F M, Chen X K, et al. Human pluripotent stem cell-derived cartilaginous organoids promote scaffold-free healing of critical size long bone defects. Stem Cell Research & Therapy, 2021, 12(1): 513.
[33]   Xie C, Liang R J, Ye J C, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials, 2022, 288: 121741.
doi: 10.1016/j.biomaterials.2022.121741
[34]   Crispim J F, Ito K. De novo neo-hyaline-cartilage from bovine organoids in viscoelastic hydrogels. Acta Biomaterialia, 2021, 128: 236-249.
doi: 10.1016/j.actbio.2021.04.008
[35]   Sun Y, Wu Q, Dai K R, et al. Generating 3D-cultured organoids for pre-clinical modeling and treatment of degenerative joint disease. Signal Transduction and Targeted Therapy, 2021, 6(1): 1-4.
doi: 10.1038/s41392-020-00451-w
[36]   Vallmajo-Martin Q, Broguiere N, Millan C, et al. PEG/HA hybrid hydrogels for biologically and mechanically tailorable bone marrow organoids. Advanced Functional Materials, 2020, 30(48): 1910282.
doi: 10.1002/adfm.v30.48
[37]   Khan A O, Rodriguez-Romera A, Reyat J S, et al. Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discovery, 2023, 13(2): 364-385.
doi: 10.1158/2159-8290.CD-22-0199
[38]   王强, 吴德升. 小鼠骨质疏松模型建立方法的研究进展. 中国脊柱脊髓杂志, 2021, 31(6):572-576.
[38]   Wang Q, Wu D S. Research progress in the establishment of mouse osteoporosis model. Chinese Journal of Spine and Spinal Cord, 2021, 31(6):572-576.
[39]   Iordachescu A, Hughes E A B, Joseph S, et al. Trabecular bone organoids: a micron-scale ‘humanised’ prototype designed to study the effects of microgravity and degeneration. Npj Microgravity, 2021, 7(1): 1-21.
doi: 10.1038/s41526-020-00129-1
[40]   Al-Modawi R N, Brinchmann J E, Karlsen T A. Multi-pathway protective effects of microRNAs on human chondrocytes in an in vitro model of osteoarthritis. Molecular Therapy Nucleic Acids, 2019, 17: 776-790.
doi: 10.1016/j.omtn.2019.07.011
[41]   Szponder T, Latalski M, Danielewicz A, et al. Osteoarthritis: pathogenesis, animal models, and new regenerative therapies. Journal of Clinical Medicine, 2022, 12(1): 5.
doi: 10.3390/jcm12010005
[42]   Tassey J, Sarkar A, Van Handel B, et al. A single-cell culture system for dissecting microenvironmental signaling in development and disease of cartilage tissue. Frontiers in Cell and Developmental Biology, 2021, 9: 725854.
doi: 10.3389/fcell.2021.725854
[43]   van Hoolwerff M, Rodríguez Ruiz A, Bouma M, et al. High-impact FN1 mutation decreases chondrogenic potential and affects cartilage deposition via decreased binding to collagen type II. Science Advances, 2021, 7(45): eabg8583.
[44]   Rothbauer M, Byrne R A, Schobesberger S, et al. Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research. Lab on a Chip, 2021, 21(21): 4128-4143.
doi: 10.1039/d1lc00130b pmid: 34505620
[45]   Limraksasin P, Kondo T, Zhang M L, et al. In vitro fabrication of hybrid bone/cartilage complex using mouse induced pluripotent stem cells. International Journal of Molecular Sciences, 2020, 21(2): 581.
doi: 10.3390/ijms21020581
[46]   O’Connor S K, Katz D B, Oswald S J, et al. Formation of osteochondral organoids from murine induced pluripotent stem cells. Tissue Engineering Part A, 2021, 27(15-16): 1099-1109.
doi: 10.1089/ten.TEA.2020.0273 pmid: 33191853
[47]   Hall G N, Tam W L, Andrikopoulos K S, et al. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials, 2021, 273: 120820.
doi: 10.1016/j.biomaterials.2021.120820
[48]   Veys C, Benmoussa A, Contentin R, et al. Tumor suppressive role of miR-342-5p in human chondrosarcoma cells and 3D organoids. International Journal of Molecular Sciences, 2021, 22(11): 5590.
doi: 10.3390/ijms22115590
[49]   Subramaniam D, Angulo P, Ponnurangam S, et al. Suppressing STAT5 signaling affects osteosarcoma growth and stemness. Cell Death & Disease, 2020, 11(2): 149.
[50]   He A N, Huang Y J, Cheng W Y, et al. Organoid culture system for patient-derived lung metastatic osteosarcoma. Medical Oncology, 2020, 37(11): 1-9.
doi: 10.1007/s12032-019-1328-3
[51]   Visconti R J, Kolaja K, Cottrell J A. A functional three-dimensional microphysiological human model of myeloma bone disease. Journal of Bone and Mineral Research, 2021, 36(10): 1914-1930.
doi: 10.1002/jbmr.v36.10
[52]   Abraham D M, Herman C, Witek L, et al. Self-assembling human skeletal organoids for disease modeling and drug testing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2022, 110(4): 871-884.
doi: 10.1002/jbm.b.v110.4
[53]   Nie J H, Yang T, Li H, et al. Frequently expressed glypican-3 as a promising novel therapeutic target for osteosarcomas. Cancer Science, 2022, 113(10): 3618-3632.
doi: 10.1111/cas.v113.10
[54]   He Y N, Li F, Jiang P, et al. Remote control of the recruitment and capture of endogenous stem cells by ultrasound for in situ repair of bone defects. Bioactive Materials, 2023, 21: 223-238.
doi: 10.1016/j.bioactmat.2022.08.012
[55]   Heo D N, Hospodiuk M, Ozbolat I T. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomaterialia, 2019, 95: 348-356.
doi: S1742-7061(19)30159-X pmid: 30831326
[56]   Park Y, Cheong E, Kwak J G, et al. Trabecular bone organoid model for studying the regulation of localized bone remodeling. Science Advances, 2021, 7(4): eabd6495.
doi: 10.1126/sciadv.abd6495
[57]   He Y Q, Li H L, Yu Z C, et al. Exosomal let-7f-5p derived from mineralized osteoblasts promotes the angiogenesis of endothelial cells via the DUSP1/Erk1/ 2 signaling pathway. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16(12): 1184-1195.
doi: 10.1002/term.v16.12
[58]   Hu W X, Lazar M A. Modelling metabolic diseases and drug response using stem cells and organoids. Nature Reviews Endocrinology, 2022, 18(12): 744-759.
doi: 10.1038/s41574-022-00733-z pmid: 36071283
[59]   Banh L, Cheung K K, Chan M W Y, et al. Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthritis and Cartilage, 2022, 30(8): 1050-1061.
doi: 10.1016/j.joca.2022.03.012
[60]   Skardal A, Murphy S V, Devarasetty M, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports, 2017, 7(1): 1-16.
doi: 10.1038/s41598-016-0028-x
[61]   Hendriks D, Clevers H, Artegiani B. CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell, 2020, 27(5): 705-731.
doi: 10.1016/j.stem.2020.10.014 pmid: 33157047
[62]   Jacob F, Salinas R D, Zhang D Y, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell, 2020, 180(1): 188-204.e22.
doi: S0092-8674(19)31321-2 pmid: 31883794
[1] YANG Huan-lian,QIU Fei,WANG Guo-quan,DIAO Yong. Progress in the Research and Application of Tumor Organoids in Drug Screening and Personalized Drug Treatment[J]. China Biotechnology, 2022, 42(6): 47-53.
[2] ZHENG Ying,DENG Shi-bi,CHEN Fang. The Development Trend of Stem Cell Technology and Regenerative Medicine[J]. China Biotechnology, 2022, 42(4): 111-119.
[3] FENG Xiao-ying,MENG Qian,CHEN Wei,YU Lei,HUANG Wei-ren. Application Progress of Organoids-on-a-chip in Medical Research[J]. China Biotechnology, 2022, 42(1/2): 112-118.
[4] YUAN Ya-kun,LIU Guang-yang,LIU Yong-jun,XIE Ya-fang,WU Hao. Comparison of Research and Clinical Transformation on Mesenchymal Stem Cells between China and the US[J]. China Biotechnology, 2020, 40(4): 97-107.
[5] LI Yu,ZHANG Xiao. The Experience and Enlightenment of Cell Therapy Regulation Dual-track System in Japan[J]. China Biotechnology, 2020, 40(1-2): 174-179.
[6] Jing-li WANG,Zhen-zhen DING,Hui LIU,Yan-ting TANG. Development and Application of the Binding Assay for Tomato Spotted Wilt Virus Nucleoprotein Using Fluorescent Polarization Technology[J]. China Biotechnology, 2018, 38(11): 18-24.
[7] ZHU Yun-peng, WANG Peng, XIA Bo-ran, TANG Yan-ting, WANG Quan. Screening and Inhibition Kinetics of SARS Coronavirus Main Protease Inhibitors[J]. China Biotechnology, 2016, 36(4): 35-42.
[8] WANG Dian-liang. The Birth and Development of Tissue Engineering[J]. China Biotechnology, 2014, 34(5): 122-129.
[9] SHI Wen-fang, FENG Yue, WEI Da-qiao, XIA Xue-shan. Hepatitis C Virus Targeting Drug and Drug Screening System[J]. China Biotechnology, 2011, 31(11): 95-101.
[10] ZHOU Li-hong, CHEN Zi-qiang, HUANG Guo-you, ZHAI Xiao, CHEN Yong-mei, XU Fong, LU Tian-jian. The Application of Cell Bioprinting[J]. China Biotechnology, 2010, 30(12): 95-104.
[11] . Establish an ELISA Method for Screening Agonists of the Rattus Norvegicus LXRβ[J]. China Biotechnology, 2010, 30(07): 0-0.
[12] XIE Gui-Huang, DIAO Qing-Lan, CHEN Chao-Yin. Application of Pseudovirus Systems on Anti-HIV-1 Drugs Screening and Drug-resistance Analyzing of HIV-1-Variants[J]. China Biotechnology, 2010, 30(03): 95-99.
[13] SHI Ji-Jing, LIU Chao-Ai, JU Kun, YANG Jie-Wei, GAO Meng-Xing, YANG Fan. Establishment of hIL-6 Protein Binding to sIL-6R Model for Screening IL-6 Inhibitors[J]. China Biotechnology, 2009, 29(11): 60-65.
[14] qiu shenghong. The Application of Zebrafish in the Study of the Tumor Antiangiogenesis[J]. China Biotechnology, 2009, 29(10): 98-101.
[15] . Study on A GFP Expression System for Detecting Estrogenic Compounds[J]. China Biotechnology, 2006, 26(10): 24-29.