Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (8): 72-85    DOI: 10.13523/j.cb.2303031
    
Gene Editing Tools Based on CRISPR/Cas System and Their Improvement Strategies
XIN Yuan1,TIAN Kai-ren3,QIAO Jian-jun1,2,3,CAIYIN Qing-ge-le1,2,**()
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2 Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
3 Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
Download: HTML   PDF(1491KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

CRISPR/Cas system has continuously promoted the progress in the field of life science since its discovery. At the same time, the gene editing technology mediated by CRISPR/Cas is also developing and improving continuously. The development of new gene editing tools such as CRISPR/Cas gene editing technology based on DSBs repair, base editors and prime editors has paved the way for basic biological research. Although these tools have brought revolutionary changes to biotechnology, problems such as low efficiency of gene editing, low purity of products and frequent off-target effects began to emerge. The continuous development of accurate, efficient, and secure CRISPR/Cas editing tools remains a current and future research focus. Here, the development, composition and principle of CRISPR/Cas system based gene editing tools are briefly described. The general strategies for the CRISPR/Cas system to improve editing efficiency, expand editing scope and reduce off-target effects are systematically summarized, as well as the improvement methods of different CRISPR/Cas gene editing tools. In addition, the future research direction of CRISPR gene editing tools is discussed.



Key wordsCRISPR/Cas      Gene editing efficiency      DSBs      Base editors      Prime editors     
Received: 10 March 2023      Published: 05 September 2023
ZTFLH:  Q812  
Cite this article:

XIN Yuan, TIAN Kai-ren, QIAO Jian-jun, CAIYIN Qing-ge-le. Gene Editing Tools Based on CRISPR/Cas System and Their Improvement Strategies. China Biotechnology, 2023, 43(8): 72-85.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2303031     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I8/72

Fig.1 Principle of CRISPR/Cas gene editing system (a) The gene editing principle of Cas9 and Cas12 (b) The gene editing principle of base editings (c) The gene editing principle of prime editings
Fig.2 gRNA engineering (a) Optimization of structure (b) RNA array for multi-gene editing (c) Chemical modification (d) Introducing functional structures
Cas蛋白变体 Cas蛋白类型 突变位点 突变方式 参考文献
eSpCas9(1.1) Type II-A K848A/K1003A/R1060A Rational [41]
SpCas9-HF1 Type II-A N497A/ R661A/Q695A,/Q926A Rational [42]
SpCas9-HF2 Type II-A N497A/R661A/Q695A /Q926A/ D1135E Rational [42]
HeFSpCas9 Type II-A N497A/ R661A/N692A/ M694A/ Q695A/H698A/Q926A Rational [47]
HypaCas9 Type II-A N692A/ M694A/Q695A/ H698A Rational [44]
evoCas9 Type II-A M495V/Y515N/K526E/R661L Irrational [48]
Sniper-Cas9 Type II-A F539S/M763I/K890N Irrational [49]
SuperFi-Cas9 Type II-A Y1010D/Y1013D/Y1016D/ V1018D/R1019D/Q1027D/K1031D Rational [45]
HiFi Cas9 Type II-A R691R Rational [50]
LZ3 Cas9 Type II-A N690C/T769I/G915M/N980K Irrational [51]
enAsCas12a Type V-A E174R/S542R/K548R Rational [52]
enAsCas12a-HF1 Type V-A E174R/N282A/S542R/K548R Rational [52]
hfCas12Max Type V-I N243R/E336R/D892R Rational [43]
BhCas12b-v4 Type V-B K846R/ S893R/E837G Rational [46]
Cas12iHiFi Type V-I N164Y/E178R/K238R/K394A/T447R/E563R/ E323R/D362R Rational [53]
Table 1 High-fidelity variants of Cas proteins
Cas蛋白类型 PAM位点 Cas蛋白变体 PAM位点 参考文献
Nme1Cas9 N4GATT - - [59]
St1Cas9 NNAGAAW - - [60]
St3Cas9 NGGNG - - [60]
GeoCas9 N4CRAA - - [61]
CjCas9 N4RYAC - - [62]
ScCas9 NNG - - [63]
SmacCas9 NAA - - [64]
SpCas9 NGG SpCas9-VQR NGA [57]
SpCas9-EQR NGAG [57]
SpCas9-VRER NGCG [57]
SpCas9-VRQR NGA [57]
xCas9-3.7 NG [54]
SpCas9-NG NG [65]
SpCas9-NRRH NRRH [55]
SpCas9-NRCH NRCH [55]
SpCas9-NRTH NRTH [55]
SpG NGN [58]
SpRY NRN/NYN [58]
SaCas9 NNGRRT SaCas9-KKH NNNRRT [66]
FnCas9 NGG FnCas9-RHA YG [67]
Nme2Cas9 N4CC eNme2-T.1 N4TN [56]
eNme2-T.2 N4TN [56]
eNme2-C N4CN [56]
eNme2-C.NR N4CN [56]
Table 2 Cas9 orthologs and their variants with expanded targeting scope
Cas蛋白类型 PAM位点 Cas蛋白变体 PAM位点 参考文献
AsCas12f1 NTTR - - [68]
Un1Cas12f1 TTTR - - [18]
Cas12e TTCN - - [69]
CmCas12f TTAT - - [70]
AsCas12a TTTV AsCas12a-RR TYCV [71]
AsCas12a-RVR TATV [71]
enAsCas12a TTYN/VTTV/TRTV [52]
enAsCas12a-HF TTYN/VTTV/TRTV [52]
LbCas12a TTTV LbCas12a-RR TYCV [71]
LbCas12a-RVR TATV [71]
LbCas12a-RVRR TNTN/TWCV/CYCV [72]
impLbCas12a NTTV/TAYV/YYYV/TGTV [72]
FnCas12a TTV/TTTV FnCas12a-RR TYCV/TCTV [73]
FnCas12a-RVR TWTV [73]
MbCas12a TTV/TTTV MbCas12a-RR TYCV/TCTV [73]
MbCas12a-RVR TWTV [73]
Mb2Cas12a VTTV Mb2Cas12a-RVR TATV [74]
Mb2Cas12a-RVRR NTTV/TATV/TYCV/CYCV NTTV/TATV/TYCV/CYCV [74]
ErCas12a YTTN ErCas12a-RR TYCV [75]
ErCas12a-RVR TATV [75]
Cas12i2 TTN Cas12iMax NTNN/NNTN/NAAN/NCAN [53]
Table 3 Cas12 orthologs and their variants with expanded targeting scope
Fig.3 Optimization strategies for base editors and prime editors
[1]   Koonin E V, Makarova K S, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 2017, 37: 67-78.
doi: S1369-5274(17)30023-1 pmid: 28605718
[2]   Jamehdor S, Zaboli K A, Naserian S, et al. An overview of applications of CRISPR-Cas technologies in biomedical engineering. Folia Histochemica et Cytobiologica, 2020, 58(3): 163-173.
doi: 10.5603/FHC.a2020.0023
[3]   Hille F, Richter H, Wong S P, et al. The biology of CRISPR-Cas: backward and forward. Cell, 2018, 172(6): 1239-1259.
doi: S0092-8674(17)31383-1 pmid: 29522745
[4]   Jiang W Y, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3): 233-239.
doi: 10.1038/nbt.2508 pmid: 23360965
[5]   Tao J L, Bauer D E, Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nature Communications, 2023, 14(1): 1-16.
doi: 10.1038/s41467-022-34464-6
[6]   Komor A C, Kim Y B, Packer M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420-424.
doi: 10.1038/nature17946
[7]   Anzalone A V, Randolph P B, Davis J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149-157.
doi: 10.1038/s41586-019-1711-4
[8]   Liu G W, Lin Q P, Jin S, et al. The CRISPR-Cas toolbox and gene editing technologies. Molecular Cell, 2022, 82(2): 333-347.
doi: 10.1016/j.molcel.2021.12.002
[9]   Dong C, Gou Y W, Lian J Z. SgRNA engineering for improved genome editing and expanded functional assays. Current Opinion in Biotechnology, 2022, 75: 102697.
doi: 10.1016/j.copbio.2022.102697
[10]   Pyzocha N K, Chen S D. Diverse class 2 CRISPR-Cas effector proteins for genome engineering applications. ACS Chemical Biology, 2018, 13(2): 347-356.
doi: 10.1021/acschembio.7b00800 pmid: 29121460
[11]   Xue C Y, Greene E C. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends in Genetics, 2021, 37(7): 639-656.
doi: 10.1016/j.tig.2021.02.008 pmid: 33896583
[12]   王玥, 牟彦双, 刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展. 中国生物工程杂志, 2020, 40(12): 58-66.
[12]   Wang Y, Mou Y S, Liu Z H. Progress of CRISPR/Cas base editing system. China Biotechnology, 2020, 40(12): 58-66.
[13]   Kurt I C, Zhou R H, Iyer S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology, 2021, 39(1): 41-46.
doi: 10.1038/s41587-020-0609-x
[14]   Zhao D D, Li J, Li S W, et al. Publisher Correction: Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology, 2021, 39(1): 115.
[15]   Chen P J, Liu D R. Prime editing for precise and highly versatile genome manipulation. Nature Reviews Genetics, 2023, 24(3): 161-177.
doi: 10.1038/s41576-022-00541-1
[16]   Manghwar H, Li B, Ding X, et al. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2020, 7(6): 1902312.
[17]   Tsuchida C A, Zhang S Y, Doost M S, et al. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Molecular Cell, 2022, 82(6): 1199-1209.e6.
doi: 10.1016/j.molcel.2022.02.002
[18]   Kim D Y, Lee J M, Bin Moon S, et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nature Biotechnology, 2022, 40(1): 94-102.
doi: 10.1038/s41587-021-01009-z
[19]   Riesenberg S, Helmbrecht N, Kanis P, et al. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Nature Communications, 2022, 13(1): 1-8.
doi: 10.1038/s41467-021-27699-2
[20]   Kocak D D, Josephs E A, Bhandarkar V, et al. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nature Biotechnology, 2019, 37(6): 657-666.
doi: 10.1038/s41587-019-0095-1 pmid: 30988504
[21]   Hu Z W, Wang Y N, Liu Q, et al. Improving the precision of base editing by bubble hairpin single guide RNA. mBio, 2021, 12(2): e00342-21.
[22]   Nelson J W, Randolph P B, Shen S P, et al. Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology, 2022, 40(3): 402-410.
doi: 10.1038/s41587-021-01039-7
[23]   Zhang G Q, Liu Y, Huang S S, et al. Enhancement of prime editing via xrRNA motif-joined pegRNA. Nature Communications, 2022, 13(1): 1-12.
doi: 10.1038/s41467-021-27699-2
[24]   Li X Y, Wang X, Sun W J, et al. Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. Journal of Molecular Cell Biology, 2022, 14(4): mjac022.
doi: 10.1093/jmcb/mjac022
[25]   Chylinski K, Hubmann M, Hanna R E, et al. CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci. Nature Communications, 2019, 10(1): 1-12.
doi: 10.1038/s41467-018-07882-8
[26]   Carlson-Stevermer J, Kelso R, Kadina A, et al. CRISPR off enables spatio-temporal control of CRISPR editing. Nature Communications, 2020, 11(1): 1-7.
doi: 10.1038/s41467-019-13993-7
[27]   Jiang Y H, Liu Y F, Wang K, et al. Fine-tuning Cas9 activity with a cognate inhibitor AcrIIA4 to improve genome editing in Streptomyces. ACS Synthetic Biology, 2021, 10(11): 2833-2841.
doi: 10.1021/acssynbio.1c00141
[28]   Wang S R, Wu L Y, Huang H Y, et al. Conditional control of RNA-guided nucleic acid cleavage and gene editing. Nature Communications, 2020, 11(1): 1-10.
doi: 10.1038/s41467-019-13993-7
[29]   Bao Z H, Xiao H, Liang J, et al. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synthetic Biology, 2015, 4(5): 585-594.
doi: 10.1021/sb500255k
[30]   Bao Z H, HamediRad M, Xue P, et al. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nature Biotechnology, 2018, 36(6): 505-508.
doi: 10.1038/nbt.4132
[31]   Lian J Z, Schultz C, Cao M F, et al. Multi-functional genome-wide CRISPR system for high throughput genotype-phenotype mapping. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8
[32]   Ma X L, Zhang Q Y, Zhu Q L, et al. A robust CRISPR/Cas 9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284.
doi: 10.1016/j.molp.2015.04.007
[33]   Reis A C, Halper S M, Vezeau G E, et al. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nature Biotechnology, 2019, 37(11): 1294-1301.
doi: 10.1038/s41587-019-0286-9 pmid: 31591552
[34]   Xie K B, Minkenberg B, Yang Y N. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3570-3575.
[35]   Zhang Y P, Wang J, Wang Z B, et al. A gRNA-tRNA array for CRISPR-Cas 9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8
[36]   Haurwitz R E, Jinek M, Wiedenheft B, et al. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science, 2010, 329(5997): 1355-1358.
doi: 10.1126/science.1192272 pmid: 20829488
[37]   Tang X, Zheng X L, Qi Y P, et al. A single transcript CRISPR-Cas 9 system for efficient genome editing in plants. Molecular Plant, 2016, 9(7): 1088-1091.
doi: 10.1016/j.molp.2016.05.001 pmid: 27212389
[38]   Zhang Y X, Malzahn A A, Sretenovic S, et al. The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 2019, 5(8): 778-794.
doi: 10.1038/s41477-019-0461-5 pmid: 31308503
[39]   Filippova J, Matveeva A, Zhuravlev E, et al. Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. Biochimie, 2019, 167: 49-60.
doi: S0300-9084(19)30253-6 pmid: 31493470
[40]   Hendel A, Bak R O, Clark J T, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature Biotechnology, 2015, 33(9): 985-989.
doi: 10.1038/nbt.3290 pmid: 26121415
[41]   Slaymaker I M, Gao L Y, Zetsche B, et al. Rationally engineered Cas 9 nucleases with improved specificity. Science, 2016, 351(6268): 84-88.
doi: 10.1126/science.aad5227 pmid: 26628643
[42]   Kleinstiver B P, Pattanayak V, Prew M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490-495.
doi: 10.1038/nature16526
[43]   Zhang H N, Kong X F, Xue M X, et al. An engineered xCas12i with high activity, high specificity, and broad PAM range. Protein & Cell, 2023, 14(7): 538-543.
[44]   Chen J S, Dagdas Y S, Kleinstiver B P, et al. Enhanced proofreading governs CRISPR-Cas 9 targeting accuracy. Nature, 2017, 550(7676): 407-410.
doi: 10.1038/nature24268
[45]   Sun W, Wang Y L. SuperFi-Cas9: high fidelity meets high activity. The CRISPR Journal, 2022, 5(2): 171-173.
doi: 10.1089/crispr.2022.29146.ywa
[46]   Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for human genome editing. Nature Communications, 2019, 10(1): 1-8.
doi: 10.1038/s41467-018-07882-8
[47]   Kulcsár P I, Tálas A, Huszár K, et al. Crossing enhanced and high fidelity SpCas 9 nucleases to optimize specificity and cleavage. Genome Biology, 2017, 18(1): 190.
doi: 10.1186/s13059-017-1318-8 pmid: 28985763
[48]   Casini A, Olivieri M, Petris G, et al. A highly specific SpCas 9 variant is identified by in vivo screening in yeast. Nature Biotechnology, 2018, 36(3): 265-271.
doi: 10.1038/nbt.4066
[49]   Lee J K, Jeong E, Lee J, et al. Directed evolution of CRISPR-Cas 9 to increase its specificity. Nature Communications, 2018, 9(1): 1-10.
doi: 10.1038/s41467-017-02088-w
[50]   Vakulskas C A, Dever D P, Rettig G R, et al. A high-fidelity Cas 9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nature Medicine, 2018, 24(8): 1216-1224.
doi: 10.1038/s41591-018-0137-0
[51]   Schmid-Burgk J L, Gao L Y, Li D, et al. Highly parallel profiling of Cas 9 variant specificity. Molecular Cell, 2020, 78(4): 794-800.e8.
doi: S1097-2765(20)30143-X pmid: 32187529
[52]   Kleinstiver B P, Sousa A A, Walton R T, et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 2019, 37(3): 276-282.
doi: 10.1038/s41587-018-0011-0 pmid: 30742127
[53]   Chen Y C, Hu Y P, Wang X G, et al. Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing. Innovation (Cambridge (Mass)), 2022, 3(4): 100264.
[54]   Hu J H, Miller S M, Geurts M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556(7699): 57-63.
doi: 10.1038/nature26155
[55]   Miller S M, Wang T N, Randolph P B, et al. Continuous evolution of SpCas 9 variants compatible with non-G PAMs. Nature Biotechnology, 2020, 38(4): 471-481.
doi: 10.1038/s41587-020-0412-8
[56]   Huang T P, Heins Z J, Miller S M, et al. High-throughput continuous evolution of compact Cas 9 variants targeting single-nucleotide-pyrimidine PAMs. Nature Biotechnology, 2023, 41(1): 96-107.
doi: 10.1038/s41587-022-01410-2
[57]   Kleinstiver B P, Prew M S, Tsai S Q, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523(7561): 481-485.
doi: 10.1038/nature14592
[58]   Walton R T, Christie K A, Whittaker M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science, 2020, 368(6488): 290-296.
doi: 10.1126/science.aba8853 pmid: 32217751
[59]   Esvelt K M, Mali P, Braff J L, et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature Methods, 2013, 10(11): 1116-1121.
doi: 10.1038/nmeth.2681 pmid: 24076762
[60]   Müller M, Lee C M, Gasiunas G, et al. Streptococcus thermophilus CRISPR-Cas 9 systems enable specific editing of the human genome. Molecular Therapy, 2016, 24(3): 636-644.
doi: 10.1038/mt.2015.218
[61]   Harrington L B, Paez-Espino D, Staahl B T, et al. A thermostable Cas 9 with increased lifetime in human plasma. Nature Communications, 2017, 8(1): 1-8.
doi: 10.1038/s41467-016-0009-6
[62]   Kim E, Koo T, Park S W, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications, 2017, 8(1): 1-12.
doi: 10.1038/s41467-016-0009-6
[63]   Chatterjee P, Jakimo N, Lee J, et al. An engineered ScCas 9 with broad PAM range and high specificity and activity. Nature Biotechnology, 2020, 38(10): 1154-1158.
doi: 10.1038/s41587-020-0517-0
[64]   Chatterjee P, Lee J, Nip L, et al. A Cas9 with PAM recognition for adenine dinucleotides. Nature Communications, 2020, 11(1): 1-6.
doi: 10.1038/s41467-019-13993-7
[65]   Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 2018, 361(6408): 1259-1262.
doi: 10.1126/science.aas9129 pmid: 30166441
[66]   Kleinstiver B P, Prew M S, Tsai S Q, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas 9 by modifying PAM recognition. Nature Biotechnology, 2015, 33(12): 1293-1298.
doi: 10.1038/nbt.3404 pmid: 26524662
[67]   Hirano H, Gootenberg J, Horii T, et al. Structure and engineering of Francisella novicida Cas9. Cell, 2016, 164(5): 950-961.
doi: 10.1016/j.cell.2016.01.039
[68]   Wu Z W, Zhang Y F, Yu H P, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nature Chemical Biology, 2021, 17(11): 1132-1138.
doi: 10.1038/s41589-021-00868-6 pmid: 34475565
[69]   Liu J J, Orlova N, Oakes B L, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature, 2019, 566(7743): 218-223.
doi: 10.1038/s41586-019-0908-x
[70]   Harrington L B, Burstein D, Chen J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, 362(6416): 839-842.
doi: 10.1126/science.aav4294 pmid: 30337455
[71]   Gao L Y, Cox D B T, Yan W X, et al. Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology, 2017, 35(8): 789-792.
doi: 10.1038/nbt.3900 pmid: 28581492
[72]   Tóth E, Varga É, Kulcsár P I, et al. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Research, 2020, 48(7): 3722-3733.
doi: 10.1093/nar/gkaa110 pmid: 32107556
[73]   Tóth E, Czene B C, Kulcsár P I, et al. Mb- and FnCpf1 nucleases are active in mammalian cells: activities and PAM preferences of four wild-type Cpf1 nucleases and of their altered PAM specificity variants. Nucleic Acids Research, 2018, 46(19): 10272-10285.
doi: 10.1093/nar/gky815 pmid: 30239882
[74]   Zhang Y X, Ren Q R, Tang X, et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications, 2021, 12(1): 1-11.
doi: 10.1038/s41467-020-20314-w
[75]   Lin Q P, Zhu Z X, Liu G W, et al. Genome editing in plants with MAD7 nuclease. Journal of Genetics and Genomics, 2021, 48(6): 444-451.
doi: 10.1016/j.jgg.2021.04.003 pmid: 34120856
[76]   Bertrand C, Thibessard A, Bruand C, et al. Bacterial NHEJ: a never ending story. Molecular Microbiology, 2019, 111(5): 1139-1151.
doi: 10.1111/mmi.14218 pmid: 30746801
[77]   Bai Q Y, Cheng S, Zhang J L, et al. Establishment of genomic library technology mediated by non-homologous end joining mechanism in Yarrowia lipolytica. Science China Life Sciences, 2021, 64(12): 2114-2128.
doi: 10.1007/s11427-020-1885-x
[78]   Zheng X, Li S Y, Zhao G P, et al. An efficient system for deletion of large DNA fragments in Escherichia coli via introduction of both Cas9 and the non-homologous end joining system from Mycobacterium smegmatis. Biochemical and Biophysical Research Communications, 2017, 485(4): 768-774.
doi: S0006-291X(17)30420-5 pmid: 28257845
[79]   Cui Y L, Dong H N, Ma Y Y, et al. Strategies for applying nonhomologous end joining-mediated genome editing in prokaryotes. ACS Synthetic Biology, 2019, 8(10): 2194-2202.
doi: 10.1021/acssynbio.9b00179 pmid: 31525995
[80]   Tong Y J, Charusanti P, Zhang L X, et al. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synthetic Biology, 2015, 4(9): 1020-1029.
doi: 10.1021/acssynbio.5b00038 pmid: 25806970
[81]   冯爽, 王春伟, 苏小虎. 动物基因组编辑中提升CRISPR/Cas9介导的同源重组效率研究进展. 中国生物工程杂志, 2022, 42(9): 83-92.
[81]   Feng S, Wang C W, Su X H. Research advancement of CRISPR/Cas9 directed homologous recombination efficiency improvements in mammal genome editing. China Biotechnology, 2022, 42(9): 83-92.
[82]   Liu M J, Rehman S, Tang X D, et al. Methodologies for improving HDR efficiency. Frontiers in Genetics, 2019, 9: 691.
doi: 10.3389/fgene.2018.00691
[83]   Kopa P, Macieja A, Pastwa E, et al. DNA double-strand breaks repair inhibitors potentiates the combined effect of VP-16 and CDDP in human colorectal adenocarcinoma (LoVo) cells. Molecular Biology Reports, 2021, 48(1): 709-720.
doi: 10.1007/s11033-020-06124-9 pmid: 33389482
[84]   Yang H, Ren S L, Yu S Y, et al. Methods favoring homology-directed repair choice in response to CRISPR/Cas 9 induced-double strand breaks. International Journal of Molecular Sciences, 2020, 21(18): 6461.
doi: 10.3390/ijms21186461
[85]   Reuven N, Adler J, Broennimann K, et al. Recruitment of DNA repair MRN complex by intrinsically disordered protein domain fused to Cas 9 improves efficiency of CRISPR-mediated genome editing. Biomolecules, 2019, 9(10): 584.
doi: 10.3390/biom9100584
[86]   Jayavaradhan R, Pillis D M, Goodman M, et al. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nature Communications, 2019, 10(1): 1-13.
doi: 10.1038/s41467-018-07882-8
[87]   Guo T T, Xin Y P, Zhang Y, et al. A rapid and versatile tool for genomic engineering in Lactococcus lactis. Microbial Cell Factories, 2019, 18(1): 1-12.
doi: 10.1186/s12934-018-1049-x
[88]   Jiang Y, Chen B, Duan C L, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 2015, 81(7): 2506-2514.
doi: 10.1128/AEM.04023-14 pmid: 25636838
[89]   Shy B R, Vykunta V S, Ha A, et al. High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nature Biotechnology, 2023, 41(4): 521-531.
doi: 10.1038/s41587-022-01418-8
[90]   Komor A C, Zhao K T, Packer M S, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: a base editors with higher efficiency and product purity. Science Advances, 2017, 3(8): eaao4774.
[91]   Wang L J, Xue W, Yan L, et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Research, 2017, 27(10): 1289-1292.
doi: 10.1038/cr.2017.111 pmid: 28849781
[92]   Sun N X, Zhao D D, Li S W, et al. Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity. Molecular Therapy: the Journal of the American Society of Gene Therapy, 2022, 30(7): 2452-2463.
doi: 10.1016/j.ymthe.2022.03.023
[93]   Anzalone A V, Koblan L W, Liu D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 2020, 38(7): 824-844.
doi: 10.1038/s41587-020-0561-9 pmid: 32572269
[94]   Richter M F, Zhao K T, Eton E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology, 2020, 38(7): 883-891.
doi: 10.1038/s41587-020-0453-z pmid: 32433547
[95]   Chen L, Zhang S, Xue N N, et al. Engineering a precise adenine base editor with minimal bystander editing. Nature Chemical Biology, 2023, 19(1): 101-110.
doi: 10.1038/s41589-022-01163-8
[96]   Chen L, Zhu B Y, Ru G M, et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nature Biotechnology, 2023, 41(5): 663-672.
doi: 10.1038/s41587-022-01532-7
[97]   Koblan L W, Doman J L, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 2018, 36(9): 843-846.
doi: 10.1038/nbt.4172 pmid: 29813047
[98]   Kim Y B, Komor A C, Levy J M, et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology, 2017, 35(4): 371-376.
doi: 10.1038/nbt.3803 pmid: 28191901
[99]   Tan J J, Zhang F, Karcher D, et al. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8
[100]   Anders C, Niewoehner O, Duerst A, et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, 513(7519): 569-573.
doi: 10.1038/nature13579
[101]   Ryu S M, Koo T, Kim K, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nature Biotechnology, 2018, 36(6): 536-539.
doi: 10.1038/nbt.4148
[102]   Wang Y, Liu Y, Li J W, et al. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum. Biotechnology and Bioengineering, 2019, 116(11): 3016-3029.
doi: 10.1002/bit.27121 pmid: 31317533
[103]   Wang Y H, Zhou L F, Liu N, et al. BE-PIGS: a base-editing tool with deaminases inlaid into Cas 9 PI domain significantly expanded the editing scope. Signal Transduction and Targeted Therapy, 2019, 4(1): 1-3.
doi: 10.1038/s41392-018-0034-5
[104]   Tong H W, Wang X C, Liu Y H, et al. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nature Biotechnology, 2023: 1-5.
[105]   Kim D Y, Chung Y, Lee Y J, et al. Hypercompact adenine base editors based on a Cas12f variant guided by engineered RNA. Nature Chemical Biology, 2022, 18(9): 1005-1013.
doi: 10.1038/s41589-022-01077-5
[106]   Zong Y, Liu Y J, Xue C X, et al. Author Correction: an engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 2022, 40(9): 1412.
doi: 10.1038/s41587-022-01308-z pmid: 35396351
[107]   Liu P P, Liang S Q, Zheng C W, et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nature Communications, 2021, 12(1): 1-13.
doi: 10.1038/s41467-020-20314-w
[108]   Velimirovic M, Zanetti L C, Shen M W, et al. Peptide fusion improves prime editing efficiency. Nature Communications, 2022, 13(1): 1-8.
doi: 10.1038/s41467-021-27699-2
[109]   Song M, Lim J M, Min S, et al. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nature Communications, 2021, 12(1): 1-8.
doi: 10.1038/s41467-020-20314-w
[110]   Li M, Zhong A, Wu Y J, et al. Transient inhibition of p 53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. Nature Communications, 2022, 13(1): 1-12.
doi: 10.1038/s41467-021-27699-2
[111]   Grünewald J, Miller B R, Szalay R N, et al. Engineered CRISPR prime editors with compact, untethered reverse transcriptases. Nature Biotechnology, 2023, 41(3): 337-343.
doi: 10.1038/s41587-022-01473-1
[112]   Ferreira da Silva J, Oliveira G P, Arasa-Verge E A, et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nature Communications, 2022, 13(1): 1-11.
doi: 10.1038/s41467-021-27699-2
[113]   Chen P J, Hussmann J A, Yan J, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell, 2021, 184(22): 5635-5652.e29.
doi: 10.1016/j.cell.2021.09.018 pmid: 34653350
[114]   Anzalone A V, Gao X D, Podracky C J, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nature Biotechnology, 2022, 40(5): 731-740.
doi: 10.1038/s41587-021-01133-w
[115]   Jiang T T, Zhang X O, Weng Z P, et al. Deletion and replacement of long genomic sequences using prime editing. Nature Biotechnology, 2022, 40(2): 227-234.
doi: 10.1038/s41587-021-01026-y
[116]   Choi J, Chen W, Suiter C C, et al. Precise genomic deletions using paired prime editing. Nature Biotechnology, 2022, 40(2): 218-226.
doi: 10.1038/s41587-021-01025-z
[117]   Yarnall M T N, Ioannidi E I, Schmitt-Ulms C, et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nature Biotechnology, 2023, 41(4): 500-512.
doi: 10.1038/s41587-022-01527-4
[1] FENG Shuang,WANG Chun-wei,SU Xiao-hu. Research Advancement of CRISPR/Cas9 Directed Homologous Recombination Efficiency Improvements in Mammal Genome Editing[J]. China Biotechnology, 2022, 42(9): 83-92.
[2] QU Li-li,DING Xue-feng,CAI Yan-fei,LU Chen,LI Hua-zhong,JIN Jian,CHEN Yun. Discovery of Stable Expression Sites in CHO Genome NW-003614092.1[J]. China Biotechnology, 2022, 42(6): 12-19.
[3] ZHANG Jun-you,WANG Qi-lin,LIU Qian,QI Si-han,LI Chun-yan. Research Progress of CRISPR/Cas Gene Editing Technology in Enhancer Function Analysis and Identification[J]. China Biotechnology, 2022, 42(4): 24-32.
[4] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[5] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[6] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[7] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[8] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[9] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[10] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[11] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[12] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[13] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[14] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[15] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.