Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (1): 52-60    DOI: 10.13523/j.cb.2312105
    
A Brief Overview of Synthetic Biology
Yujuan LI1,3,Xiongfei FU1,Xianen ZHANG2,4,*()
1 Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2 Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
3 Faculty of Law, University of Macau, Macau SAR 999078, China
4 National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
Download: HTML   PDF(1406KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Synthetic biology, as a groundbreaking and transformative technology for understanding life, has opened the door to the transformation of non-living matter into living matter. It enables the rational design and editing of biological systems, providing a new paradigm for life science research and catalyzing the iterative development of biotechnology. Over the past two decades, synthetic biology has achieved a series of breakthroughs, gradually realizing innovative applications and establishing a disciplinary framework. The development of synthetic biology can be broadly grouped into three directions: first, a series of breakthroughs in enabling technologies; second, the iterative improvement of the synthesis and assembly capabilities of biological genomes; and third, the construction and application of cell factories and novel biological systems (“build to learn” and “build to use”). Based on the progress in life sciences, we attempt to elucidate the disciplinary framework of synthetic biology, and envision future trends.



Key wordsSynthetic biology      Engineering biology      Enabling technology      Genome editing      Disciplinary framework     
Received: 09 January 2024      Published: 04 February 2024
ZTFLH:  Q81  
Cite this article:

Yujuan LI, Xiongfei FU, Xianen ZHANG. A Brief Overview of Synthetic Biology. China Biotechnology, 2024, 44(1): 52-60.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2312105     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I1/52

比较 生物技术 合成生物学
属性 利用生物体系造福人类,属于基因产业 利用生物体系造福人类,属于基因产业
应用 医药健康、生物工业、生物农业、生物能源、环境修复、生物材料、生物电子与生物信息,等 医药健康、生物工业、生物农业、生物能源、环境修复、生物材料、生物电子与生物信息,等
手段 单个外源基因的克隆与表达 生物设计、大规模基因组合成与组装、基因网络编辑、底盘细胞、人工智能(黑箱模型)与生物智造
形式 一个基因,一个产业:乙肝疫苗、胰岛素、干扰素、抗体药基因修饰作物,等 生物设计,多基因协同:合成疫苗及药物、精准细胞治疗、复杂代谢产品、基因网络育种、新功能生物电子、生物传感、生物材料,等
能力 初级 高级
Table 1 Correlation and difference between synthetic biology and traditional biotechnology
Fig.1 Development trajectory of synthetic biology
Fig.2 Disciplinary framework of synthetic biology
[1]   张先恩. 世界生命科学格局中的中国. 中国科学院院刊, 2022, 37(5): 622-635.
[1]   Zhang X E. China in global landscape of life sciences. Bulletin of Chinese Academy of Sciences, 2022, 37(5): 622-635.
[2]   张先恩. 中国合成生物学发展回顾与展望. 中国科学: 生命科学, 2019, 49(12): 1543-1572.
[2]   Zhang X E. Synthetic biology in China: review and prospects. Scientia Sinica (Vitae), 2019, 49(12): 1543-1572.
[3]   赵国屏. 合成生物学: 开启生命科学“会聚” 研究新时代. 中国科学院院刊, 2018, 33(11): 1135-1149.
[3]   Zhao G P. Synthetic biology: unsealing the convergence era of life science research. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1135-1149.
[4]   D W A. Synthetic biology and the mechanism of life. Nature, 1913, 91(2272): 270-272.
[5]   Cameron D E, Bashor C J, Collins J J. A brief history of synthetic biology. Nature Reviews Microbiology, 2014, 12(5): 381-390.
doi: 10.1038/nrmicro3239 pmid: 24686414
[6]   Zhang X E, Liu C L, Dai J B, et al. Enabling technology and core theory of synthetic biology. Science China Life Sciences, 2023, 66(8): 1742-1785.
doi: 10.1007/s11427-022-2214-2
[7]   Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767): 339-342.
doi: 10.1038/35002131
[8]   Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403(6767): 335-338.
doi: 10.1038/35002125
[9]   Zong Y Q, Zhang H M, Lyu C, et al. Insulated transcriptional elements enable precise design of genetic circuits. Nature Communications, 2017, 8(1): 52.
doi: 10.1038/s41467-017-00063-z pmid: 28674389
[10]   Qin C R, Xiang Y H, Liu J, et al. Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system. Nature Communications, 2023, 14(1): 1500.
doi: 10.1038/s41467-023-37244-y pmid: 36932109
[11]   Chen Y, Kim J K, Hirning A J, et al. Emergent genetic oscillations in a synthetic microbial consortium. Science, 2015, 349(6251): 986-989.
doi: 10.1126/science.aaa3794 pmid: 26315440
[12]   Malyshev D A, Dhami K, Lavergne T, et al. A semi-synthetic organism with an expanded genetic alphabet. Nature, 2014, 509(7500): 385-388.
doi: 10.1038/nature13314
[13]   Zhang Y, Ptacin J L, Fischer E C, et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature, 2017, 551(7682): 644-647.
doi: 10.1038/nature24659
[14]   Qin F F, Li B Y, Wang H, et al. Linking chromatin acylation mark-defined proteome and genome in living cells. Cell, 2023, 186(5): 1066-1085, e36.
doi: 10.1016/j.cell.2023.02.007 pmid: 36868209
[15]   Xu Y, Zhu T F. Mirror-image T 7 transcription of chirally inverted ribosomal and functional RNAs. Science, 2022, 378(6618): 405-412.
doi: 10.1126/science.abm0646
[16]   Wang J Y, Doudna J A. CRISPR technology: a decade of genome editing is only the beginning. Science, 2023, 379(6629): eadd8643.
doi: 10.1126/science.add8643
[17]   Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[18]   Wang S K, Gabel C, Siddique R, et al. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector. Cell, 2023, 186(19): 4204-4215, e19.
doi: 10.1016/j.cell.2023.07.010 pmid: 37557170
[19]   Nielsen A A K, Der B S, Shin J, et al. Genetic circuit design automation. Science, 2016, 352(6281): aac7341.
doi: 10.1126/science.aac7341
[20]   Meng F K, Ellis T. The second decade of synthetic biology: 2010-2020. Nature Communications, 2020, 11(1): 5174.
doi: 10.1038/s41467-020-19092-2 pmid: 33057059
[21]   Dou J Y, Vorobieva A A, Sheffler W, et al. De novo design of a fluorescence-activating β-barrel. Nature, 2018, 561(7724): 485-491.
doi: 10.1038/s41586-018-0509-0
[22]   Shen H, Fallas J A, Lynch E, et al. De novo design of self-assembling helical protein filaments. Science, 2018, 362(6415): 705-709.
doi: 10.1126/science.aau3775 pmid: 30409885
[23]   Chen Z B, Boyken S E, Jia M X, et al. Programmable design of orthogonal protein heterodimers. Nature, 2019, 565(7737): 106-111.
doi: 10.1038/s41586-018-0802-y
[24]   Lu P L, Min D, DiMaio F, et al. Accurate computational design of multipass transmembrane proteins. Science, 2018, 359(6379): 1042-1046.
doi: 10.1126/science.aaq1739 pmid: 29496880
[25]   Thornburg Z R, Bianchi D M, Brier T A, et al. Fundamental behaviors emerge from simulations of a living minimal cell. Cell, 2022, 185(2): 345-360, e28.
doi: 10.1016/j.cell.2021.12.025 pmid: 35063075
[26]   Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873): 583-589.
doi: 10.1038/s41586-021-03819-2
[27]   Callaway E. ‘The entire protein universe’: AI predicts shape of nearly every known protein. Nature, 2022, 608(7921): 15-16.
doi: 10.1038/d41586-022-02083-2
[28]   Lin Z M, Akin H, Rao R, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 2023, 379(6637): 1123-1130.
doi: 10.1126/science.ade2574 pmid: 36927031
[29]   Cui Y L, Wang Y H, Tian W Y, et al. Development of a versatile and efficient C-N lyase platform for asymmetric hydroamination via computational enzyme redesign. Nature Catalysis, 2021, 4(5): 364-373.
doi: 10.1038/s41929-021-00604-2
[30]   Cui Y L, Chen Y C, Liu X Y, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catalysis, 2021, 11(3): 1340-1350.
doi: 10.1021/acscatal.0c05126
[31]   Huang B, Xu Y, Hu X H, et al. A backbone-centred energy function of neural networks for protein design. Nature, 2022, 602(7897): 523-528.
doi: 10.1038/s41586-021-04383-5
[32]   Gu Z H, Luo X, Chen J X, et al. Hierarchical graph transformer with contrastive learning for protein function prediction. Bioinformatics, 2023, 39(7): btad410.
doi: 10.1093/bioinformatics/btad410
[33]   罗楠, 赵国屏, 刘陈立. 合成生物学的科学问题. 生命科学, 2021, 33(12): 1429-1435.
[33]   Luo N, Zhao G P, Liu C L. Scientific questions for synthetic biology. Chinese Bulletin of Life Sciences, 2021, 33(12): 1429-1435.
[34]   Cello J, Paul A V, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 2002, 297(5583): 1016-1018.
doi: 10.1126/science.1072266 pmid: 12114528
[35]   Moger-Reischer R Z, Glass J I, Wise K S, et al. Evolution of a minimal cell. Nature, 2023, 620(7972): 122-127.
doi: 10.1038/s41586-023-06288-x
[36]   Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52-56.
doi: 10.1126/science.1190719 pmid: 20488990
[37]   Hutchison C A, Chuang R Y, Noskov V N, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253.
doi: 10.1126/science.aad6253
[38]   Pelletier J F, Sun L J, Wise K S, et al. Genetic requirements for cell division in a genomically minimal cell. Cell, 2021, 184(9): 2430-2440, e16.
doi: 10.1016/j.cell.2021.03.008
[39]   Annaluru N, Muller H, Mitchell L A, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344(6179): 55-58.
doi: 10.1126/science.1249252 pmid: 24674868
[40]   Richardson S M, Mitchell L A, Stracquadanio G, et al. Design of a synthetic yeast genome. Science, 2017, 355(6329): 1040-1044.
doi: 10.1126/science.aaf4557 pmid: 28280199
[41]   Cover stories: making the synthetic yeast chromosomes cover and introductory spread image. Science, 2017, 355(6329): eaan1126.
doi: 10.1126/science.aan1126
[42]   Zhao Y, Coelho C, Hughes A L, et al. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell, 2023, 186(24): 5220-5236, e16.
doi: 10.1016/j.cell.2023.09.025
[43]   Schindler D, Walker R S K, Jiang S Y, et al. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell, 2023, 186(24): 5237-5253, e22.
doi: 10.1016/j.cell.2023.10.015
[44]   Dai J B, Yang H M, Pretorius I S, et al. A spotlight on global collaboration in the Sc2.0 yeast consortium. Cell Genomics, 2023, 3(11): 100441.
doi: 10.1016/j.xgen.2023.100441
[45]   Shao Y Y, Lu N, Wu Z F, et al. Creating a functional single-chromosome yeast. Nature, 2018, 560(7718): 331-335.
doi: 10.1038/s41586-018-0382-x
[46]   Luo J C, Sun X J, Cormack B P, et al. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature, 2018, 560(7718): 392-396.
doi: 10.1038/s41586-018-0374-x
[47]   Wang L B, Li Z K, Wang L Y, et al. A sustainable mouse karyotype created by programmed chromosome fusion. Science, 2022, 377(6609): 967-975.
doi: 10.1126/science.abm1964 pmid: 36007034
[48]   Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943.
doi: 10.1038/nature04640
[49]   Luo X Z, Reiter M A, d’Espaux L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature, 2019, 567(7746): 123-126.
doi: 10.1038/s41586-019-0978-9
[50]   Tang H T, Lin S M, Deng J L, et al. Engineering yeast for the de novo synthesis of jasmonates. Nature Synthesis, 2023, DOI:10.1038/S44160-023-00429-W.
doi: 10.1038/S44160-023-00429-W
[51]   Galanie S, Thodey K, Trenchard I J, et al. Complete biosynthesis of opioids in yeast. Science, 2015, 349(6252): 1095-1100.
doi: 10.1126/science.aac9373 pmid: 26272907
[52]   Cai T, Sun H B, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373(6562): 1523-1527.
doi: 10.1126/science.abh4049 pmid: 34554807
[53]   Zheng T T, Zhang M L, Wu L H, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis, 2022, 5: 388-396.
doi: 10.1038/s41929-022-00775-6
[54]   Kang Q, Fang H, Xiang M J, et al. A synthetic cell-free 36-enzyme reaction system for vitamin B12 production. Nature Communications, 2023, 14(1): 5177.
doi: 10.1038/s41467-023-40932-4
[55]   An B L, Wang Y Y, Huang Y Y, et al. Engineered living materials for sustainability. Chemical Reviews, 2023, 123(5): 2349-2419.
doi: 10.1021/acs.chemrev.2c00512
[56]   Lin Y N, Guan Y Y, Dong X, et al. Engineering Halomonas bluephagenesis as a chassis for bioproduction from starch. Metabolic Engineering, 2021, 64: 134-145.
doi: 10.1016/j.ymben.2021.01.014
[57]   Tang T C, An B L, Huang Y Y, et al. Materials design by synthetic biology. Nature Reviews Materials, 2021, 6(4): 332-350.
doi: 10.1038/s41578-020-00265-w
[58]   Dong Y M, Sun F J, Ping Z, et al. DNA storage: research landscape and future prospects. National Science Review, 2020, 7(6): 1092-1107.
doi: 10.1093/nsr/nwaa007 pmid: 34692128
[59]   Wang D B, Cui M M, Li M, et al. Biosensors for the detection of Bacillus anthracis. Accounts of Chemical Research, 2021, 54(24): 4451-4461.
doi: 10.1021/acs.accounts.1c00407
[60]   Haleem A, Javaid M, Singh R P, et al. Biosensors applications in medical field: a brief review. Sensors International, 2021, 2: 100100.
doi: 10.1016/j.sintl.2021.100100
[61]   Gallup O, Ming H, Ellis T. Ten future challenges for synthetic biology. Engineering Biology, 2021, 5(3): 51-59.
doi: 10.1049/enb.v5.3
[62]   Hillson N, Caddick M, Cai Y Z, et al. Building a global alliance of biofoundries. Nature Communications, 2019, 10(1): 2040.
doi: 10.1038/s41467-019-10079-2 pmid: 31068573
[63]   Vickers C E, Freemont P S. Pandemic preparedness: synthetic biology and publicly funded biofoundries can rapidly accelerate response time. Nature Communications, 2022, 13(1): 453.
doi: 10.1038/s41467-022-28103-3 pmid: 35064129
[1] Xianhao XU, Long LIU, Jian CHEN. Synthetic Biology and Future Food[J]. China Biotechnology, 2024, 44(1): 61-71.
[2] Li XU, Ruonan YANG, Yue WANG, Huilin SHI, Zhenqi LI, Chenqi JIN, Wei LI, Ping XU. Analysis of the Development Trends of Life and Health Sciences and Technology[J]. China Biotechnology, 2024, 44(1): 32-40.
[3] ZUO Kun-lan, ZOU Shi-shi, WU Zong-zhen, GUO Yuan-yuan, XU Yan-long, LIU Huan. Biosafety Risks and Countermeasures of Pathogen Related Synthetic Biology[J]. China Biotechnology, 2023, 43(9): 120-130.
[4] HONG Xia, TIAN Kai-ren, QIAO Jian-jun, LI Yan-ni. Application Progress of Genetically Encoded Biosensors in Microbial Cell Factory[J]. China Biotechnology, 2023, 43(9): 62-76.
[5] Jia-wen LI, Yu-xuan FAN, Fu-li LI, Zhao-hui ZHANG, Shi-an WANG. Ide.pngication of Short Peptides from Oleosin for Lipid Droplet Localization in Xanthophyllomyces dendrorhous[J]. China Biotechnology, 2023, 43(7): 36-43.
[6] FU Meng-meng, SU Dan-dan, ZUO Kun-lan, WU Zong-zhen, LI Si-si, XU Yan-long, LIU Huan. Biosafety Risks of Synthetic Biology Related to Human Immunity and The Countermeaseures[J]. China Biotechnology, 2023, 43(6): 125-132.
[7] LI Yu-tong, CUI Tian-qi, ZHANG Hai-lin, YU Guang-le, LUAN Ji, WANG Hai-long. Research Advances in Tumor-targeting Bacteria Escherichia coli Nissle 1917 in Cancer Therapy[J]. China Biotechnology, 2023, 43(6): 54-68.
[8] LIU Ting-ting, ZHANG Ping, ZHANG Yue. Regulation Role of Light-controlled Expression Systems in Synthetic Biology[J]. China Biotechnology, 2023, 43(4): 92-100.
[9] NING Jun-tao, ZOU Shi-shi, ZUO Kun-lan, WU Zong-zhen, Li Jing, XU Yan-long, LIU Huan. Biosafety Risks and Countermeasures of Active Substance in Synthesis Biology[J]. China Biotechnology, 2023, 43(2/3): 180-189.
[10] BAO Xin-ru, CHEN Mao-sen, ZHONG Jie, QI Feng. Characteristics and Application of CRISPR/Cas12a Genome Editing Technology[J]. China Biotechnology, 2023, 43(10): 32-42.
[11] YANG Yang, YAO Ming-dong, WANG Ying, XIAO Wen-hai. Research Progress of Synthesis of 2'-Fucosyllactose by Yeast[J]. China Biotechnology, 2023, 43(1): 127-138.
[12] FENG Shuang,WANG Chun-wei,SU Xiao-hu. Research Advancement of CRISPR/Cas9 Directed Homologous Recombination Efficiency Improvements in Mammal Genome Editing[J]. China Biotechnology, 2022, 42(9): 83-92.
[13] Xue-xia ZENG,Yu DAN,Shao-ming MAO,Jia-hui SUN,Guo-dong LUAN,Xue-feng LV. Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide[J]. China Biotechnology, 2022, 42(7): 90-100.
[14] ZHANG Da-lu,GE Qi,FENG Yi-bo,CHEN Wei-gang. Comparison and Analysis on Scientific Research Programs on DNA Data Storage[J]. China Biotechnology, 2022, 42(6): 116-129.
[15] BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms[J]. China Biotechnology, 2022, 42(6): 76-85.