Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (12): 39-45    DOI: 10.13523/j.cb.2310049
    
Immunophenotypic Characterization of Nodal Follicular Helper T Cell Lymphoma, Angioimmunoblastic-type
WANG Chun-yan1,LIU Song-ya1,ZHU Li1,YI Shu-juan1,KUANG Dong2,XIAO Ming1,MAO Xia1,*()
1 Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
2 Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Download: HTML   PDF(800KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the immunophenotypic characteristics of nodal follicular helper T-cell lymphoma, angioimmunoblastic-type (nTFHL-A), and to assess the diagnostic value of flow cytometry in nTFHL-A. Methods: A total of 227 patients were included in our study. They were initially diagnosed with nTFHL-A in the Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, from January 2010 to August 2023. Results: The lack and decreased expression of surface CD3 and the CD7 deficiency were the most common immunophenotypeic abnormalities of pan-T cell markers in nTFHL-A, and CD10 expression was the most specific for nTFHL-A. Almost all neoplastic T cells had bright PD-1 expression and CD45RO expression. Flow cytometry may present false negative results in patients with CD3-positive or slightly decreased expression and meantime with CD7-positive or partial expression (tissue 11.3%, bone marrow 10.3%). Bright PD-1 expression can improve nTFHL-A detection and also help to differentiate it from other peripheral T-cell lymphomas. Conclusions: Flow cytometry is an effective tool to screen, identify or differentiate nTFHL-A.



Key wordsT-cell lymphoma      Flow cytometry      Programmed cell death 1 (PD-1)      Immunophenotype     
Received: 09 October 2023      Published: 16 January 2024
ZTFLH:  Q939.91  
Cite this article:

Chun-yan WANG, Song-ya LIU, Li ZHU, Shu-juan YI, Dong KUANG, Ming XIAO, Xia MAO. Immunophenotypic Characterization of Nodal Follicular Helper T Cell Lymphoma, Angioimmunoblastic-type. China Biotechnology, 2023, 43(12): 39-45.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2310049     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I12/39

Fig.1 The mean fluorescent intensity of PD-1 in nonneoplastic CD4+ T cells and neoplastic T cells A.PD-1 mean fluorescent intensity (MFI) of neoplastic T cells(red dots) in nTFHL-A is significantly higher than that in corresponding nonneoplastic CD4+ T cells(blue dots) in different specimens(P<0.001) B. PD-1 MFI of neoplastic T cells(red dots) in nTFHL-A is significantly higher than that in other T-cell lymphomas (blue dots) in different specimens(P<0.05). ROC curve of PD-1 MFI in bone marrow and tissue specimens shows high sensitivity and specificity in differentiating nTFHL-A from other T-cell lymphomas(P<0.001, AUC 0.959: sensitivity 81.3% and specificity 94.6% for a cut-off of MFI 1 183 in BM samples; P<0.001, AUC 0.979: sensitivity 92.3% and specificity 95.6% for a cut-off of MFI 2 023 in tissue samples)
Fig.2 The features of PD-1 expression in different T-cell lymphomas and different subgroups A. The features of PD-1 expression in different T-cell lymphomas (tissue samples). a:Neoplastic T cells of nTFHL-A had bright PD-1 expression;b:PD-1 is negative to moderate intensity in other PTCLs; c-f: PD-1 is usually negative in anaplastic large cell lymphoma(c),sézary syndrome(d),mycosis fungoides(e) and lymphocytic-variant hypereosinophilic syndromes(f); g: Polyclonal CD4+PD-1bri+ T cells could be observed in nodular lymphocyte predominant Hodgkin lymphoma; h: Polyclonal CD4+PD-1bri+ T cells could be observed in reactive lymphoid hyperplasia B.The features of PD-1 expression in different subgroups in nTFHL-A. TRBC-1 is monoclonal in CD4+PD-1bri+ neoplastic T cells;TRBC1 is polyclonal in CD4+PD-1+ and CD4+PD-1- normal T cells
抗原/表达模式 组织93.0%(106/114) 骨髓73.4%(163/222) 体液87.5%(21/24)
PD-1
+ 97.7%(43/44) 98.2%(55/56) 100%(6/6)
p+ 2.3%(1/44) 1.8%(1/56) 0
CD10
+ 30.8%(28/91) 23.6%(29/123) 27.8%(5/18)
p+ 18.7%(17/91) 24.4%(30/123) 22.2%(4/18)
- 50.5%(46/91) 52.0%(64/123) 50.0%(9/18)
CD200
+ 84.6%(11/13) 80.0%(12/15) 0(0/1)
- 15.4%(2/13) 20.0%(3/15) 100%(1/1)
TRBC-1
+ 25.0%(7/28) 24.5%(12/49) 37.5%(3/8)
- 75.0%(21/28) 75.5%(37/49) 62.5%(5/8)
CD56
+ 6.1%(6/98) 2.1%(3/143) 5.9%(1/17)
p+ 4.1%(4/98) 0.7%(1/143) 0(0/17)
- 89.8%(88/98) 97.2%(139/143) 94.1%(16/17)
TCRαβ
+ 53.8%(28/52) 41.4%(24/58) 63.6%(7/11)
- 46.2%(24/52) 58.6%(34/58) 36.4%(4/11)
CD45RO
+ 100%(72/72) 98.9%(89/90) 100%(13/13)
CD45RA
+ 0(0/72) 1.1%(1/90) 0(0/13)
CD26
+ 7.4%(2/27) 9.4%(3/32) 25.0%(1/4)
p+ 25.9%(7/27) 37.5%(12/32) 25.0%(1/4)
- 66.7%(18/27) 53.1%(17/32) 50.0%(2/4)
CD25
+ 7.5%(3/40) 0 0
p+ 5.0%(2/40) 2.5%(1/40) 0
- 87.5%(35/40) 97.5%(39/40) 100%(5/5)
CD30
+ 0(0/57) 3.7%(2/54) 0(0/11)
p+ 8.8%(5/57) 5.6%(3/54) 0(0/11)
- 91.2%(52/57) 90.7%(49/54) 100%(11/11)
CD57
+ 4.9%(3/61) 1.25%(1/80) 0(0/13)
p+ 4.9%(3/61) 2.5%(2/80) 0(0/13)
- 90.2%(55/61) 96.25%(77/80) 100%(13/13)
Table 1 The expression of other non-pan-T cell antigens in nTFHL-A
[1]   Swerdlow S H, Campo E, Harris N L, et al. WHO classification of tumours of haematopoietic and lymphoid tissues (revised 4th edition). Lyon: IARC, 2017.
[2]   郭艳敏, 刘雪霏, 焦莉娟, 等. 血管免疫母细胞性T细胞淋巴瘤组织学分级与预后分析. 中华病理学杂志, 2019, 48(10):784-790.
doi: 10.3760/cma.j.issn.0529-5807.2019.10.007 pmid: 31594043
[2]   Guo Y M, Liu X F, Jiao L J, et al. Angioimmunoblastic T-cell lymphoma: histopathological grading and prognosis. Chinese Journal of Pathology, 2019, 48(10):784-790.
doi: 10.3760/cma.j.issn.0529-5807.2019.10.007 pmid: 31594043
[3]   de Leval L, Rickman D S, Thielen C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood, 2007, 109(11): 4952-4963.
doi: 10.1182/blood-2006-10-055145 pmid: 17284527
[4]   Iwai Y, Okazaki T, Nishimura H, et al. Microanatomical localization of PD-1 in human tonsils. Immunology Letters, 2002, 83(3): 215-220.
doi: 10.1016/s0165-2478(02)00088-3 pmid: 12095712
[5]   Yabe M, Gao Q, Ozkaya N, et al. Bright PD-1 expression by flow cytometry is a powerful tool for diagnosis and monitoring of angioimmunoblastic T-cell lymphoma. Blood Cancer Journal, 2020, 10(3): 1-5.
doi: 10.1038/s41408-019-0268-7
[6]   Basha B M, Bryant S C, Rech K L, et al. Application of a 5 marker panel to the routine diagnosis of peripheral T-cell lymphoma with T-follicular helper phenotype. American Journal of Surgical Pathology, 2019, 43(9): 1282-1290.
doi: 10.1097/PAS.0000000000001315 pmid: 31283630
[7]   Krishnan C, Warnke R A, Arber D A, et al. PD-1 expression in T-cell lymphomas and reactive lymphoid entities: potential overlap in staining patterns between lymphoma and viral lymphadenitis. The American Journal of Surgical Pathology, 2010, 34(2): 178-189.
[8]   Wood B L, Arroz M, Barnett D, et al. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry Part B: Clinical Cytometry, 2007, 72B(S1): S14-S22.
[9]   中国抗癌协会血液肿瘤专业委员会. 流式细胞学在非霍奇金淋巴瘤诊断中的应用专家共识. 中华病理学杂志, 2017, 46(4): 217-222.
[9]   Hematology Oncology Committee of China Anti-Cancer Association. Expert consensus on the application of flow cytometry in the diagnosis of non-Hodgkin’s lymphoma. Chinese Journal of Pathology, 2017, 46(4): 217-222.
[10]   Attygalle A, Al-Jehani R, Diss T C, et al. Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood, 2002, 99(2): 627-633.
doi: 10.1182/blood.v99.2.627 pmid: 11781247
[11]   Wang C Y, Zhu L, Liu S Y, et al. PD-1 combined with TRBC1 and pan-T cell antibodies for robustly monitoring angioimmunoblastic T-cell lymphoma. Frontiers in Medicine, 2022, 9: 962428.
doi: 10.3389/fmed.2022.962428
[12]   Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia, 2022, 36(7): 1720-1748.
doi: 10.1038/s41375-022-01620-2 pmid: 35732829
[13]   Craig Fiona E, Foon Kenneth A. Flow cytometric immunophenotyping for hematologic neoplasms. Blood, 2008, 111(8): 3941-3967.
doi: 10.1182/blood-2007-11-120535 pmid: 18198345
[14]   鲁华东, 谢建兰, 张丽娜, 等. 血管免疫母细胞性T细胞淋巴瘤模式Ⅰ型临床病理学特征. 中华病理学杂志, 2022, 51(9):856-860.
doi: 10.3760/cma.j.cn112151-20211222-00925 pmid: 36097902
[14]   Lu H D, Xie J L, Zhang L N, et al. Clinicopathological features of angioimmunoblastic T-cell lymphoma pattern Ⅰ. Chinese Journal of Pathology, 2022, 51(9):856-860.
doi: 10.3760/cma.j.cn112151-20211222-00925 pmid: 36097902
[15]   Wang C Y, Mao X, Liu S Y, et al. The early diagnostic dilemma in angioimmunoblastic T cell lymphoma with excessive plasma cells proliferation. Case Reports in Medicine, 2021, 2021: 1-8.
[16]   高雪, 黄文勇, 李文生, 等. 血管免疫母细胞性T细胞淋巴瘤伴霍奇金样细胞的临床病理分析. 中华病理学杂志, 2015, 44(8): 553-558.
[16]   Gao X, Huang W Y, Li W S, et al. Clinicopathologic analysis of angioimmunoblastic T-cell lymphoma with Hodgkin/Reed-Sternberg-like cells. Chinese Journal of Pathology, 2015, 44(8):553-558.
[1] Nian-gui CAI, Xin CHEN, Qing-yuan ZHANG, Hao-nan DI, Xiao-zhen ZHAN, Jun-yan CHEN, Hao CHEN, Xiao-mei YAN. Exploring the Nanoworld: Development and Single-Particle-Level Characterization of Nano-flow Cytometry Technology[J]. China Biotechnology, 2023, 43(12): 1-13.
[2] Wei-hua SHI, Yan-rong LIU, Yan CHANG, Xiao-ying YUAN, Ling-ling HE, Le HAO, Jia-yi YIN, Jing-quan LU, Ya-zhe WANG. TRBC1 and TCR Vβ Comparative Analysis of Two Flow Cytometry Methods for Detecting T Cell Clonality[J]. China Biotechnology, 2023, 43(12): 102-110.
[3] Yue-meng LIU, Si-han DONG, Xun-bin WEI. Advances in the Study and Application of in vivo Flow Cytometry[J]. China Biotechnology, 2023, 43(12): 14-23.
[4] Xiao-xue XU, Shi-yu TIAN, Hao-jie WEI, Nai-li HU, Lin-yue ZOU, Lu KONG. Quantification of Surface Protein Molecules in Human Lymphocyte Subsets[J]. China Biotechnology, 2023, 43(12): 153-159.
[5] Mu-yang ZHANG, Hong-yan LIAO, Yong-mei JIN, Neng-gang JIANG. Analysis of the Correlation between CD3-/dimCD4+ Mature Lymphocytes in Bone Marrow and Peripheral T-cell Lymphoma[J]. China Biotechnology, 2023, 43(12): 53-59.
[6] Zhi-hong YANG, Ya-qi ZHANG, Yong-ze BAI, Xiu-ying TANG, Yu-ying ZHANG, Xia LI. The Clinical Application Value of Immunophenotype Analysis by Flow Cytometry in the Diagnosis and Treatment of Multiple Myeloma[J]. China Biotechnology, 2023, 43(12): 78-85.
[7] HE Ling-ling,LUO Ting-ting,CHANG Yan,WANG Ya-zhe,YUAN Xiao-ying,SHI Wei-hua,LAI Yue-yun,SHI Hong-xia,QIN Ya-zhen,HUANG Xiao-jun,LIU Yan-rong. Analysis on the Laboratory Examination Characteristics in 28 Patients with Acute Megakaryoblastic Leukemia[J]. China Biotechnology, 2019, 39(9): 2-10.
[8] ZHAO Si-shu,LIU Lu,LIU Fang,QIU Hai-rong,FAN Lei,LI Jian-yong,WU Yu-jie. Diagnostic Value of CD11c Antigen in Patients with Chronic Lymphocytic Leukemia[J]. China Biotechnology, 2019, 39(9): 19-24.
[9] YUAN Xiao-ying,WANG Ya-zhe,SHI Wei-hua,CHANG Yan,HAO Le,HE Ling-ling,SHI Hong-xia,HUANG Xiao-jun,LIU Yan-rong. Methodological Study on Flow Detection of PNH Clone and Its Clinical Screening Significance[J]. China Biotechnology, 2019, 39(9): 33-40.
[10] HUI Yi-hua,WANG Hai-na,QI Yu-feng,CAO Xue-ling,GUAN Xue-mei,DUAN Jing-jing,DUAN Yi- jun,WANG Yan- feng,SU Wen. Normal Reference Range of Lymphocyte Subsets in Healthy Adults in Shanxi Province[J]. China Biotechnology, 2019, 39(9): 41-49.
[11] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[12] PENG Xian-gui,YANG Wu-chen,LI Jia,GOU Yang,WANG Ping,LIU Si-heng,ZHANG Yun,LI Yi,ZHANG Xi. The Application of Related Cytomorphological Technology in Hematological Neoplasms Research Progress[J]. China Biotechnology, 2019, 39(9): 84-90.
[13] WEI Jin-mei, FAN Xiao-qin, XIONG Hai-ting, GAO Xue-juan, LIU Xiao-hui, LIU Lang-xia. hnRNPK Interacts with Nef and Facilitates the Cell Surface Expression of CD4[J]. China Biotechnology, 2015, 35(4): 17-22.
[14] . Effects of Serum Deprivation,Confluence and Cycloheximide[J]. China Biotechnology, 2008, 28(12): 57-61.
[15] . Effect of flow cytometrically-sorted sperm on chromosomes of bovine blastocysts produced in vitro[J]. China Biotechnology, 2007, 27(1): 98-101.