Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (12): 1-13    DOI: 10.13523/j.cb.2310065
    
Exploring the Nanoworld: Development and Single-Particle-Level Characterization of Nano-flow Cytometry Technology
CAI Nian-gui,CHEN Xin,ZHANG Qing-yuan,DI Hao-nan,ZHAN Xiao-zhen,CHEN Jun-yan,CHEN Hao,YAN Xiao-mei()
Key Laboratory of Spectrochemical Analysis &Instrumentation, Ministry of Education, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Download: HTML   PDF(2893KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Accurate characterization of nanoparticles is of paramount importance for advancing our understanding of life sciences, improving disease diagnosis and treatment, and fostering the development of nanotechnology. Due to the high degree of individual variation and heterogeneity among nanoparticles, there is an urgent need for the development of rapid detection techniques at the single-particle level. This review article introduces the development of nano-flow cytometry (nFCM), a technology based on Rayleigh scattering and sheath-flow single-molecule fluorescence detection. nFCM can achieve highly sensitive, selective, and high-throughput multi-parameter analysis of the size distribution, particle concentration, and biochemical characteristics of synthetic nanoparticles (7 ~ 500 nm), as well as naturally occurring biological nanoparticles such as extracellular vesicles and viruses, at a rate of up to 10 000 particles per minute. The article discusses the significance, challenges, progress, and industrial transformation of the nFCM development, reviews its applications in nanoparticle research, and discusses its future application prospects.



Key wordsNano-flow cytometry      Single-particle analysis      Nanoparticles      Virus      Extracellular vesicles     
Received: 09 October 2023      Published: 16 January 2024
ZTFLH:  Q819  
Cite this article:

Nian-gui CAI, Xin CHEN, Qing-yuan ZHANG, Hao-nan DI, Xiao-zhen ZHAN, Jun-yan CHEN, Hao CHEN, Xiao-mei YAN. Exploring the Nanoworld: Development and Single-Particle-Level Characterization of Nano-flow Cytometry Technology. China Biotechnology, 2023, 43(12): 1-13.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2310065     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I12/1

Fig.1 Schematic depiction of the nFCM instrument and its fields of application
Fig.2 Applications of nFCM in single-particle characterization of nanomaterials
Fig.3 Applications of nFCM in single-particle characterization of viruses
Fig.4 Applications of nFCM in single-particle characterization of nanomedicines
Fig.5 Applications of nFCM in single-particle characterization of EVs
Fig.6 Applications of nFCM in single-particle characterization of engineered EVs
[1]   Daaboul G G, Yurt A, Zhang X, et al. High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. Nano Letters, 2010, 10(11): 4727-4731.
doi: 10.1021/nl103210p pmid: 20964282
[2]   Fraikin J L, Teesalu T, McKenney C M, et al. A high-throughput label-free nanoparticle analyser. Nature Nanotechnology, 2011, 6(5): 308-313.
doi: 10.1038/nnano.2011.24
[3]   Fumagalli L, Esteban-Ferrer D, Cuervo A, et al. Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces. Nature Materials, 2012, 11(9): 808-816.
doi: 10.1038/nmat3369 pmid: 22772654
[4]   Kashkanova A D, Blessing M, Gemeinhardt A, et al. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 2022, 19(5): 586-593.
doi: 10.1038/s41592-022-01460-z pmid: 35534632
[5]   Lian H, He S B, Chen C X, et al. Flow cytometric analysis of nanoscale biological particles and organelles. Annual Review of Analytical Chemistry, 2019, 12: 389-409.
doi: 10.1146/anchem.2019.12.issue-1
[6]   Hercher M, Mueller W, Shapiro H M. Detection and discrimination of individual viruses by flow cytometry. Journal of Histochemistry & Cytochemistry, 1979, 27(1): 350-352.
doi: 10.1177/27.1.374599
[7]   Steen H B. Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles. Cytometry A, 2004, 57A(2): 94-99.
doi: 10.1002/cyto.a.v57a:2
[8]   van der Vlist E J, Nolte-’t Hoen E N M, Stoorvogel W, et al. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nature Protocols, 2012, 7(7): 1311-1326.
doi: 10.1038/nprot.2012.065 pmid: 22722367
[9]   Stoner S A, Duggan E, Condello D, et al. High sensitivity flow cytometry of membrane vesicles. Cytometry A, 2016, 89(2): 196-206.
doi: 10.1002/cyto.a.v89.2
[10]   Andronico L A, Jiang Y F, Jung S R, et al. Sizing extracellular vesicles using membrane dyes and a single molecule-sensitive flow analyzer. Analytical Chemistry, 2021, 93(14): 5897-5905.
doi: 10.1021/acs.analchem.1c00253 pmid: 33784071
[11]   Kim Y, van der Pol E, Arafa A, et al. Calibration and standardization of extracellular vesicle measurements by flow cytometry for translational prostate cancer research. Nanoscale, 2022, 14(27): 9781-9795.
[12]   Yang L L, Zhu S B, Hang W, et al. Development of an ultrasensitive dual-channel flow cytometer for the individual analysis of nanosized particles and biomolecules. Analytical Chemistry, 2009, 81(7): 2555-2563.
doi: 10.1021/ac802464a pmid: 19260698
[13]   Zhu S B, Wang S, Yang L L, et al. Progress in the development of techniques based on light scattering for single nanoparticle detection. Science China Chemistry, 2011, 54(8): 1244-1253.
doi: 10.1007/s11426-011-4313-z
[14]   Zhu S B, Yang L L, Long Y, et al. Size differentiation and absolute quantification of gold nanoparticles via single particle detection with a laboratory-built high-sensitivity flow cytometer. Journal of the American Chemical Society, 2010, 132(35): 12176-12178.
doi: 10.1021/ja104052c pmid: 20707319
[15]   Zhu S B, Ma L, Wang S, et al. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano, 2014, 8(10): 10998-11006.
doi: 10.1021/nn505162u pmid: 25300001
[16]   Tian Y, Ma L, Gong M F, et al. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano, 2018, 12(1): 671-680.
doi: 10.1021/acsnano.7b07782 pmid: 29300458
[17]   Ma L, Zhu S B, Tian Y, et al. Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry. Angewandte Chemie International Edition, 2016, 55(35): 10239-10243.
[18]   Zhang W Q, Tian Y, Hu X X, et al. Light-scattering sizing of single submicron particles by high-sensitivity flow cytometry. Analytical Chemistry, 2018, 90(21): 12768-12775.
doi: 10.1021/acs.analchem.8b03135 pmid: 30277744
[19]   Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709): 538-544.
doi: 10.1126/science.1104274 pmid: 15681376
[20]   Zhou J, Yang Y, Zhang C. Y. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chemical Reviews, 2015, 115(21): 11669-11717.
doi: 10.1021/acs.chemrev.5b00049 pmid: 26446443
[21]   Wang S, Li L H, Jin S H, et al. Rapid and quantitative measurement of single quantum dots in a sheath flow cuvette. Analytical Chemistry, 2017, 89(18): 9857-9863.
doi: 10.1021/acs.analchem.7b01885 pmid: 28820244
[22]   Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824-830.
doi: 10.1038/nature01937
[23]   Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007, 58: 267-297.
pmid: 17067281
[24]   Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 2003, 107(3): 668-677.
doi: 10.1021/jp026731y
[25]   Dragan A I, Bishop E S, Casas-Finet J R, et al. Distance dependence of metal-enhanced fluorescence. Plasmonics, 2012, 7(4): 739-744.
doi: 10.1007/s11468-012-9366-0
[26]   Li C Y, Zhu J F. Metal-enhanced fluorescence of OG-488 doped in Au@SiO2 core-shell nanoparticles. Materials Letters, 2013, 112: 169-172.
doi: 10.1016/j.matlet.2013.09.021
[27]   Yan Y, Meng L Y, Zhang W Q, et al. High-throughput single-particle analysis of metal-enhanced fluorescence in free solution using Ag@SiO2 core-shell nanoparticles. ACS Sensors, 2017, 2(9): 1369-1376.
doi: 10.1021/acssensors.7b00522 pmid: 28836759
[28]   Li J R, Howard C B, Dey S, et al. A universal reagent for detection of emerging diseases using bioengineered multifunctional yeast nanofragments. Nature Nanotechnology, 2023, 18(10): 1222-1229.
doi: 10.1038/s41565-023-01415-1 pmid: 37291255
[29]   Krupovic M, Dolja V V, Koonin E V. Origin of viruses: primordial replicators recruiting capsids from hosts. Nature Reviews Microbiology, 2019, 17(7): 449-458.
doi: 10.1038/s41579-019-0205-6 pmid: 31142823
[30]   Steinmetz N F. Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine: Nanotechnology, Biology and Medicine, 2010, 6(5): 634-641.
doi: 10.1016/j.nano.2010.04.005
[31]   Lippé R. Flow virometry: a powerful tool to functionally characterize viruses. Journal of Virology, 2018, 92(3): e01765-e01717.
[32]   Brussaard C P D. Optimization of procedures for counting viruses by flow cytometry. Applied and Environmental Microbiology, 2004, 70(3): 1506-1513.
doi: 10.1128/AEM.70.3.1506-1513.2004 pmid: 15006772
[33]   Brown M R, Camézuli S, Davenport R J, et al. Flow cytometric quantification of viruses in activated sludge. Water Research, 2015, 68: 414-422.
pmid: 25462748
[34]   Gaudin R, Barteneva N S. Sorting of small infectious virus particles by flow virometry reveals distinct infectivity profiles. Nature Communications, 2015, 6:6022.
doi: 10.1038/ncomms7022 pmid: 25641385
[35]   Tang V A, Renner T M, Varette O, et al. Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine, 2016, 34(42): 5082-5089.
doi: S0264-410X(16)30770-8 pmid: 27614781
[36]   Landowski M, Dabundo J, Liu Q, et al. Nipah virion entry kinetics, composition, and conformational changes determined by enzymatic virus-like particles and new flow virometry tools. Journal of Virology, 2014, 88(24): 14197-14206.
doi: 10.1128/JVI.01632-14 pmid: 25275126
[37]   Zicari S, Arakelyan A, Fitzgerald W, et al. Evaluation of the maturation of individual Dengue virions with flow virometry. Virology, 2016, 488: 20-27.
doi: 10.1016/j.virol.2015.10.021 pmid: 26590794
[38]   El Bilali N, Duron J, Gingras D, et al. Quantitative evaluation of protein heterogeneity within Herpes simplex virus 1 particles. Journal of Virology, 2017, 91(10): e00320-17.
[39]   Arakelyan A, Fitzgerald W, King D F, et al. Flow virometry analysis of envelope glycoprotein conformations on individual HIV virions. Scientific Reports, 2017, 7: 948.
doi: 10.1038/s41598-017-00935-w pmid: 28424455
[40]   Vlasak J, Hoang V M, Christanti S, et al. Use of flow cytometry for characterization of human cytomegalovirus vaccine particles. Vaccine, 2016, 34(20): 2321-2328.
doi: 10.1016/j.vaccine.2016.03.067 pmid: 27020711
[41]   Niu Q, Ma L, Zhu S B, et al. Quantitative assessment of the physical virus titer and purity by ultrasensitive flow virometry. Angewandte Chemie International Edition, 2021, 60(17): 9351-9356.
[42]   Tian Y, Xue C F, Zhang W Q, et al. Refractive index determination of individual viruses and small extracellular vesicles in aqueous media using nano-flow cytometry. Analytical Chemistry, 2022, 94(41): 14299-14307.
doi: 10.1021/acs.analchem.2c02833 pmid: 36084271
[43]   Ji D Z, Zhang Y J, Sun J Q, et al. An engineered influenza virus to deliver antigens for lung cancer vaccination. Nature Biotechnology, 2023. doi: 10.1038/s41587-023-01796-7.
doi: 10.1038/s41587-023-01796-7
[44]   Lv P, Liu X, Chen X M, et al. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus delivery: a versatile platform for cancer virotherapy. Nano Letters, 2019, 19(5): 2993-3001.
doi: 10.1021/acs.nanolett.9b00145 pmid: 30964695
[45]   Mitchell M J, Billingsley M M, Haley R M, et al. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021, 20(2): 101-124.
doi: 10.1038/s41573-020-0090-8 pmid: 33277608
[46]   Halwani A A. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics, 2022, 14(1): 106.
doi: 10.3390/pharmaceutics14010106
[47]   Barenholz Y. Doxil®-The first FDA-approved nano-drug: lessons learned. Journal of Controlled Release, 2012, 160(2): 117-134.
doi: 10.1016/j.jconrel.2012.03.020
[48]   Chen C X, Zhu S B, Wang S, et al. Multiparameter quantification of liposomal nanomedicines at the single-particle level by high-sensitivity flow cytometry. ACS Applied Materials & Interfaces, 2017, 9(16): 13913-13919.
[49]   Alkilany A M, Zhu L, Weller H, et al. Ligand density on nanoparticles: a parameter with critical impact on nanomedicine. Advanced Drug Delivery Reviews, 2019, 143: 22-36.
doi: S0169-409X(19)30060-2 pmid: 31158406
[50]   Chen C X, Zhou Y X, Chen C, et al. Quantification of available ligand density on the surface of targeted liposomal nanomedicines at the single-particle level. ACS Nano, 2022, 16(4): 6886-6897.
doi: 10.1021/acsnano.2c02084 pmid: 35394292
[51]   Chen C X, Gao K M, Lian H, et al. Single-particle characterization of theranostic liposomes with stimulus sensing and controlled drug release properties. Biosensors and Bioelectronics, 2019, 131: 185-192.
doi: 10.1016/j.bios.2019.02.016
[52]   Fang R H, Gao W W, Zhang L F. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nature Reviews Clinical Oncology, 2023, 20(1): 33-48.
doi: 10.1038/s41571-022-00699-x
[53]   Fang R H, Kroll A V, Gao W W, et al. Cell membrane coating nanotechnology. Advanced Materials, 2018, 30(23): e1706759.
[54]   Chen W J, Tan Q, Guo M F, et al. Tumor cell-derived microparticles packaging monocarboxylate transporter 4 inhibitor fluvastatin suppress lung adenocarcinoma via tumor microenvironment remodeling and improve chemotherapy. Chemical Engineering Journal, 2023, 451: 138972.
doi: 10.1016/j.cej.2022.138972
[55]   Qiao Q, Liu X, Cui K X, et al. Hybrid biomimetic nanovesicles to drive high lung biodistribution and prevent cytokine storm for ARDS treatment. ACS Nano, 2022, 16(9): 15124-15140.
doi: 10.1021/acsnano.2c06357 pmid: 36037505
[56]   Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 2013, 200(4): 373-383.
doi: 10.1083/jcb.201211138 pmid: 23420871
[57]   Kalluri R, LeBleu V S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478): eaau6977.
doi: 10.1126/science.aau6977
[58]   van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 2018, 19(4): 213-228.
doi: 10.1038/nrm.2017.125 pmid: 29339798
[59]   Herrmann I K, Wood M J A, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nature Nanotechnology, 2021, 16(7): 748-759.
doi: 10.1038/s41565-021-00931-2 pmid: 34211166
[60]   Zhang J, Wu J C, Wang G Z, et al. Extracellular vesicles: techniques and biomedical applications related to single vesicle analysis. ACS Nano, 2023, 17(18): 17668-17698.
doi: 10.1021/acsnano.3c03172 pmid: 37695614
[61]   Tian Y, Gong M F, Hu Y Y, et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. Journal of Extracellular Vesicles, 2019, 9(1): 1697028.
doi: 10.1080/20013078.2019.1697028
[62]   Hu Y Y, Tian Y, Di H N, et al. Noninvasive diagnosis of nasopharyngeal carcinoma based on phenotypic profiling of viral and tumor markers on plasma extracellular vesicles. Analytical Chemistry, 2022, 94(27): 9740-9749.
doi: 10.1021/acs.analchem.2c01311
[63]   Thakur B K, Zhang H Y, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Research, 2014, 24(6): 766-769.
doi: 10.1038/cr.2014.44 pmid: 24710597
[64]   Sansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43): E9066-E9075.
[65]   Liu H S, Tian Y, Xue C F, et al. Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry. Journal of Extracellular Vesicles, 2022, 11(4): e12206.
doi: 10.1002/jev2.v11.4
[66]   Chen C, Cai N G, Niu Q, et al. Quantitative assessment of lipophilic membrane dye-based labelling of extracellular vesicles by nano-flow cytometry. Journal of Extracellular Vesicles, 2023, 12(8): e12351.
[67]   Wang L W, Wang D, Ye Z M, et al. Engineering extracellular vesicles as delivery systems in therapeutic applications. Advanced Science, 2023, 10(17): e2300552.
[68]   Wu Q, Fu X L, Li X, et al. Modification of adipose mesenchymal stem cells-derived small extracellular vesicles with fibrin-targeting peptide CREKA for enhanced bone repair. Bioactive Materials, 2023, 20: 208-220.
doi: 10.1016/j.bioactmat.2022.05.031 pmid: 35702606
[69]   Chen C X, Sun M D, Liu X, et al. General and mild modification of food-derived extracellular vesicles for enhanced cell targeting. Nanoscale, 2021, 13(5): 3061-3069.
doi: 10.1039/d0nr06309f pmid: 33521806
[70]   Lv Q J, Cheng L L, Lu Y, et al. Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Advanced Science, 2020, 7(18): 2000515.
doi: 10.1002/advs.v7.18
[71]   Silva A M, Lázaro-Ibáñez E, Gunnarsson A, et al. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. Journal of Extracellular Vesicles, 2021, 10(10): e12130.
doi: 10.1002/jev2.v10.10
[72]   Dooley K, McConnell R E, Xu K, et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Molecular Therapy, 2021, 29(5): 1729-1743.
doi: 10.1016/j.ymthe.2021.01.020 pmid: 33484965
[73]   Chen C X, Sun M D, Wang J L, et al. Active cargo loading into extracellular vesicles: highlights the heterogeneous encapsulation behaviour. Journal of Extracellular Vesicles, 2021, 10(13): e12163.
doi: 10.1002/jev2.v10.13
[74]   Chen C, Li Y R, Wang Q Q, et al. Single-particle assessment of six different drug-loading strategies for incorporating doxorubicin into small extracellular vesicles. Analytical and Bioanalytical Chemistry, 2023, 415(7): 1287-1298.
doi: 10.1007/s00216-022-04248-4
[1] JING Hui-yuan, DUAN Er-zhen, ZHAO Pan-deng. Improvement of the Yield of Pseudoviruses via Mutation of Lysine Residues Targeted by MARCH[J]. China Biotechnology, 2023, 43(9): 55-61.
[2] Ya-jie LIN, Chang LIU, Shao-qi GUO, Zi-hao YU, Ming-yu LI, Jun-fei LIU, Zi-zheng ZHENG, Ning-shao XIA. Analysis of Amino Acid Sites for HEV Binding to Cells[J]. China Biotechnology, 2023, 43(7): 1-11.
[3] HAN Jia, FAN Yue-lei, MAO Kai-yun. Analysis of Oncolytic Virus Market and R&D Pattern[J]. China Biotechnology, 2023, 43(6): 87-101.
[4] WANG Ze-hua, ZHANG Li-yun, MA Chun-yan. Research Progress on the Role of Mesenchymal Stem Cell Extracellular Vesicles in Lung Diseases[J]. China Biotechnology, 2023, 43(5): 76-84.
[5] MA Pin-pin, XIONG Xiang-yuan. Polymeric Nanomaterials Used in Oral Insulin Delivery Systems[J]. China Biotechnology, 2023, 43(2/3): 43-53.
[6] Xin-yi TANG, Ya-kun ZHANG, Shuang CHEN, Yu PENG, Ting-ting JIANG, Yao LIU, Zai-lin YANG. Research Progress of Biomarkers for Prognosis Evaluation of HIV- associated Diffuse Large B-cell Lymphoma Patients[J]. China Biotechnology, 2023, 43(12): 24-31.
[7] XIANG Jian, YE Bang-ce, YIN Bin-cheng. Functionalized Exosomes Reprogram the Targeted Recognition Between Immune Cells and Tumor Cells[J]. China Biotechnology, 2023, 43(10): 1-9.
[8] ZHANG Yan,MA Wen-hao,ZHAO Tian-yi,WU Xiao-bing,SHENG Wang,YANG Yi-shu. Acquisition and Activity Exploration of Human β-Galactosidase R299L Mutant[J]. China Biotechnology, 2022, 42(9): 39-49.
[9] JIN Zhe-tong,RUI Xue,JIANG Hou-zhe,WANG Jing-jing,CHEN Yu-gen. Research Progress of Non-viral Vector Delivery System for mRNA Vaccines[J]. China Biotechnology, 2022, 42(9): 58-66.
[10] LU Hui-shuang,MA Jia-xiu,JIN Jia-pei,ZHANG Jin,LI Ya-lan,CAI Xue-fei. Expression and Identification of Virus-like Particles Presenting Novel Coronavirus RBD Antigen[J]. China Biotechnology, 2022, 42(5): 117-123.
[11] HUANG Ji-an,LI Wan-meng,LIU Wei,QI Zi-tong,ZHAO Liang. Protective Effects of Copper Nanoparticles Against the Neurovascular Unit after Ischemic Stroke[J]. China Biotechnology, 2022, 42(12): 1-11.
[12] Rui-jun WU,Wei WEI,Xiao-dong SANG,Li-qi WANG,Xin ZHANG,Yi AO,Ling FAN. Progress and Prospect of Global Antiviral Drugs[J]. China Biotechnology, 2022, 42(10): 125-132.
[13] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[14] LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles[J]. China Biotechnology, 2021, 41(8): 8-16.
[15] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.