Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (12): 102-110    DOI: 10.13523/j.cb.2310046
    
TRBC1 and TCR Vβ Comparative Analysis of Two Flow Cytometry Methods for Detecting T Cell Clonality
SHI Wei-hua,LIU Yan-rong,CHANG Yan,YUAN Xiao-ying,HE Ling-ling,HAO Le,YIN Jia-yi,LU Jing-quan,WANG Ya-zhe()
Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
Download: HTML   PDF(1102KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To analyze the expression of TRBC1 and TCR Vβ repertoire in different subsets of T lymphocytes in healthy donors and compare two flow cytometry methods for detecting T cell clones and their judgment criteria. Methods: Peripheral blood was collected in 40 healthy individuals, in which five subsets were divided, including CD7+CD5+(T1), CD7+CD5dim+(T2), CD7+CD5dim2+(T3), CD7+CD5-(T4) and CD7-CD5+(T5) gated on total CD3+ cells and CD3+TCR γδ- T cells, respectively. The expression of CD4, CD8, TCR Vβ repertoire and TRBC1 were analyzed in these subsets. Results: Thirty-nine healthy donors were included for statistical analysis. The average proportions of T1, T2, T3, T4, and T5 in CD3+cells were 57.29%, 27.74%, 5.15%, 1.43%, and 5.99%, respectively. T1 and T5 are mainly composed of CD4+cells, while T2, T3, and T4 are mainly composed of CD8+cells. The TRBC1+% in T2, T3, and T4 subsets of CD3+ is significantly lower than the corresponding value of TCR γδ- within T cells of CD3+ (P<0.01). Abnormal TRBC1+% (<15% or >85%) was found in 22 subsets in 21 healthy subjects, mainly in the T3 and T4 subsets. Partial subsets show a single dominant Vβ class, with dominant Vβ class proportion ≥60% or Vβ sum value of <15% used as the criterion for determining abnormal clones. After revising the TRBC1 clonal diagnostic criteria to TRBC1+%<12% or >82%, the consistency between the two methods for determining clonality was 96.77% (180/186). After the effect of TCR γδ+ cells is removed, the distribution trend remains unchanged. The final confirmed incidence of monoclonal T cells was 38.46% (15/39), and 86.67% (13 cases) had a proportion of clonal T cells in lymphocytes below 5%, indicating physiological clonal proliferation. The other two cases accounted for 6.76% and 33.24%, respectively, which may be T-cell clones of uncertain significance (T-CUS) and T lymphocyte proliferative diseases. Conclusions: Many physiologic T-cell clones were found frequently in CD5dim+ or CD5- subsets after gated by CD7/CD5 pattern in healthy people. The significance and interpretation of clonal T cells must be closely integrated with clinical practice.



Key wordsFlow cytometry      T cells      Clonality      TCR Vβ      TRBC1     
Received: 30 October 2023      Published: 16 January 2024
ZTFLH:  Q-33  
Cite this article:

Wei-hua SHI, Yan-rong LIU, Yan CHANG, Xiao-ying YUAN, Ling-ling HE, Le HAO, Jia-yi YIN, Jing-quan LU, Ya-zhe WANG. TRBC1 and TCR Vβ Comparative Analysis of Two Flow Cytometry Methods for Detecting T Cell Clonality. China Biotechnology, 2023, 43(12): 102-110.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2310046     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I12/102

Fig.1 Gate strategy of T cell subsets CD7+CD5+ cells(T1), CD7+CD5dim+ cells(T2), CD7+CD5dim2+ cells(T3), CD7+CD5- cells(T4) and CD7-CD5+ cells (T5)
不同细胞亚群比例 CD3+细胞 CD3+TCRγδ-细胞 淋巴细胞
TCRγδ+/% 9.67±8.04 1.57±1.18
CD4+/% 49.72±11.26 55.07±11.72* 12.87±3.81
CD8+/% 40.01±11.06 42.30±11.64 10.31±4.63
CD4∶CD8 1.40±0.64 1.48±0.68
T1(CD7+CD5+)/% 57.29±13.13 61.64±13.84 35.98±11.07
T2(CD7+CD5dim+)/% 27.74±9.30 24.75±9.88 14.59±7.41
T3(CD7+CD5dim2+)/% 5.15±4.44 4.04±4.35 2.40±2.74
T4(CD7+CD5-)/% 1.43±1.24 0.69±0.92* 0.39±0.51
T5(CD7-CD5+)/% 5.99±3.26 6.39±3.20 3.75±2.07
Table 1 The proportion of different T cell subsets in normal peripheral blood
V β受体表位 CD3+ T1 T2 T3 T4 T5
vβ5.3 0.96±0.39 1.17±0.45 0.62±0.41 0.51±1.18 1.39±7.70 0.84±0.45
vβ7.1 2.06±0.71 2.35±0.65 1.82±1.67 0.74±1.02 1.84±9.48 2.09±2.51
vβ3 5.10±3.11 5.40±3.07 4.28±3.38 5.12±7.86 4.89±10.19 4.43±4.85
vβ9 4.35±2.29 5.23±2.55 2.90±3.55 2.61±5.35 0.30±0.85 3.52±2.25
vβ17 3.35±1.24 4.04±1.21 2.36±1.54 1.26±1.62 0.54±1.44 4.13±4.16
vβ16 1.95±1.48 1.75±1.13 1.83±2.28 3.47±8.77 6.14±17.40 1.92±1.60
vβ18 0.45±0.34 0.61±0.54 0.25±0.29 0.15±0.49 0.01±0.07 0.34±0.34
vβ5.1 5.12±4.24 5.40±1.22 3.96±8.23 3.54±13.17 0.91±2.70 4.29±2.21
vβ20 1.98±0.76 2.55±0.88 1.19±0.67 0.65±0.80 0.07±0.22 2.28±2.38
vβ13.1 3.48±2.03 3.87±1.91 2.62±1.83 2.25±5.37 1.31±3.32 3.20±3.42
vβ13.6 1.47±0.54 1.73±0.73 1.11±0.87 0.86±2.48 1.25±4.66 1.74±2.19
vβ8 3.71±2.28 4.16±1.64 3.34±4.65 3.58±8.02 1.40±4.22 3.39±3.19
vβ5.2 1.01±0.65 1.16±0.54 0.83±1.00 0.31±0.57 0.04±0.15 1.11±1.20
vβ2 8.80±3.80 9.92±5.22 7.51±4.56 4.53±4.35 2.05±5.24 11.17±7.76
vβ12 1.32±0.50 1.58±0.47 0.76±0.62 1.08±3.64 0.19±0.74 1.58±1.93
vβ23 1.24±1.66 1.14±1.11 1.10±2.37 2.48±8.12 1.89±5.48 0.91±1.45
vβ1 4.89±4.43 4.63±3.17 5.04±6.92 3.16±5.30 1.62±6.17 4.88±7.30
Vβ21.3 2.05±0.98 2.55±1.28 1.25±0.86 0.97±2.12 0.53±1.19 2.67±3.20
vβ11 1.15±0.64 1.21±0.59 1.06±1.09 0.89±1.63 0.52±2.63 0.82±0.72
vβ22 3.77±1.89 4.24±2.36 2.81±2.47 3.18±9.40 2.90±8.87 5.29±7.40
vβ14 2.80±0.93 3.03±0.70 2.78±1.74 1.94±3.65 1.09±4.33 2.34±1.59
vβ13.2 4.48±1.88 5.31±2.22 3.55±1.88 3.19±4.65 1.13±3.26 3.48±1.64
vβ4 1.60±1.23 1.80±0.92 1.40±2.46 0.80±1.46 0.31±1.01 1.84±1.57
vβ7.2 1.26±0.81 1.32±1.03 1.31±1.18 1.52±4.00 0.83±2.18 1.36±2.17
总TCR Vβ 68.35±7.67 76.14±6.83 55.66±14.52 48.81±22.71 33.14±27.54 69.64±14.94
Table 2 Percentages of TCR Vβ repertoire and TRBC1 in CD3+ and T1-T5 subsets in a cohort of 39 normal specimen
Fig.2 Comparison of TRBC1 expression in different subsets between CD3+ and CD3+TCRγδ- cells
细胞亚群 编号 淋巴细胞
比例/%
TRBC1+/% TCR Vβ检测 单克隆
<15% >85% 单个优势表位/% 总和/% 优势表位占比/%
T2 10 21.98 13.65 26.65 71.66 37.19
38 33.24 8.16 51.81 85.77 60.41
T3 4 6.76 5.39 73.28 77.36 94.73
1 1.37 12.87 27.55
5 3.31 13.19 29.38
10 1.37 8.68 39.48 64.79 60.94
21 3.52 13.58 38.85 80.84 48.06
24 2.43 8.26 11.20 31.62 35.42
35 4.39 13.72 25.33 69.08 36.67
T4 11 1.53 95.33 46.10 50.53 91.23
7 0.27 94.00 12.81 15.01 92.01
5 0.76 3.29 45.96 52.99 86.73
6 0.94 0.00 48.70,33.68 88.81 92.76
14 0.35 13.24 69.44 80.21 86.57
21 1.31 11.62 74.30 98.54 75.40
23 1.19 10.15 5.74
26 2.15 5.63 10.52
27 0.17 10.20 1.19
33 1.77 0.54 15.40 21.44 71.83
36 0.43 11.29 59.35 84.66 70.10
37 0.38 10.43 11.45
Table 3 Comparison the results of TCR Vβ repertoire with TRBC1 in T1-T5 subsets
Fig.3 Abnormal antigen pattern of CD7/CD5 and the expression of TRBC1 in different subsets in one healthy donor
[1]   van den Beemd R, Boor P P C, van Lochem E G, et al. Flow cytometric analysis of the Vβ repertoire in healthy controls. Cytometry, 2000, 40(4): 336-345.
pmid: 10918284
[2]   Morice W G, Kimlinger T, Katzmann J A, et al. Flow cytometric assessment of TCR-Vβ expression in the evaluation of peripheral blood involvement by T-cell lymphoproliferative disorders. American Journal of Clinical Pathology, 2004, 121(3): 373-383.
doi: 10.1309/3A32DTVMH640M2QA
[3]   Maciocia P M, Wawrzyniecka P A, Philip B, et al. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nature Medicine, 2017, 23(12): 1416-1423.
doi: 10.1038/nm.4444 pmid: 29131157
[4]   Clemente M J, Wlodarski M W, Makishima H, et al. Clonal drift demonstrates unexpected dynamics of the T-cell repertoire in T-large granular lymphocyte leukemia. Blood, 2011, 118(16): 4384-4393.
doi: 10.1182/blood-2011-02-338517 pmid: 21865345
[5]   Andersson E, Kuusanmäki H, Bortoluzzi S, et al. Activating somatic mutations outside the SH2-domain of STAT 3 in LGL leukemia. Leukemia, 2016, 30(5): 1204-1208.
doi: 10.1038/leu.2015.263 pmid: 26419508
[6]   Hsieh Y C, Chang S T, Huang W T, et al. A comparative study of flow cytometric T cell receptor Vβ repertoire and T cell receptor gene rearrangement in the diagnosis of large granular lymphocytic lymphoproliferation. International Journal of Laboratory Hematology, 2013, 35(5): 501-509.
doi: 10.1111/ijlh.12041 pmid: 23286298
[7]   Bretschneider I, Clemente M J, Meisel C, et al. Discrimination of T-cell subsets and T-cell receptor repertoire distribution. Immunologic Research, 2014, 58(1): 20-27.
doi: 10.1007/s12026-013-8473-0 pmid: 24272857
[8]   Shi M, Jevremovic D, Otteson G E, et al. Single antibody detection of T-cell receptor αβ clonality by flow cytometry rapidly identifies mature T-cell neoplasms and monotypic small CD8- positive subsets of uncertain significance. Cytometry Part B: Clinical Cytometry, 2020, 98(1):99-107.
doi: 10.1002/cyto.b.v98.1
[9]   张宁涵, 陈肖, 赵四书, 等. TRBC1在成熟T细胞淋巴瘤中的表达特点及诊断价值. 中华血液学杂志, 2022, 43(7): 575-580.
doi: 10.3760/cma.j.issn.0253-2727.2022.07.008 pmid: 36709135
[9]   Zhang N H, Chen X, Zhao S S, et al. The expressional characteristics and diagnostic values of TRBC 1 in mature T-cell lymphoma. Chinese Journal of Hematology, 2022, 43(7): 575-580.
doi: 10.3760/cma.j.issn.0253-2727.2022.07.008 pmid: 36709135
[10]   Horna P, Shi M, Olteanu H, et al. Emerging role of T-cell receptor constant β chain-1 (TRBC1) expression in the flow cytometric diagnosis of T-cell malignancies. International Journal of Molecular Sciences, 2021, 22(4): 1817.
doi: 10.3390/ijms22041817
[11]   Shi M, Olteanu H, Jevremovic D, et al. T-cell clones of uncertain significance are highly prevalent and show close resemblance to T-cell large granular lymphocytic leukemia. Implications for laboratory diagnostics. Modern Pathology, 2020, 33(10): 2046-2057.
doi: 10.1038/s41379-020-0568-2 pmid: 32404954
[12]   Peruzzi B, Bencini S, Caporale R. TCR Vβ evaluation by flow cytometry. T-helper cells. New York: Humana, 2021: 99-109.
[13]   Beck R C, Stahl S, O’Keefe C L, et al. Detection of mature T-cell leukemias by flow cytometry using anti-T-cell receptor Vβ antibodies. American Journal of Clinical Pathology, 2003, 120(5): 785-794.
doi: 10.1309/835B04QXGNNFNRJU
[1] WAN Yue, ZHOU Bin, GAO Rui, CHEN Hui, GAO Miao-miao, WANG Xiao-fang, DONG Dian-dian, XIANG Shen-si, YANG Xiao-ming, YU Miao. LAG-3 Knockout Exacerbates Immune Liver Injury[J]. China Biotechnology, 2023, 43(8): 38-51.
[2] Chun-yan WANG, Song-ya LIU, Li ZHU, Shu-juan YI, Dong KUANG, Ming XIAO, Xia MAO. Immunophenotypic Characterization of Nodal Follicular Helper T Cell Lymphoma, Angioimmunoblastic-type[J]. China Biotechnology, 2023, 43(12): 39-45.
[3] Nian-gui CAI, Xin CHEN, Qing-yuan ZHANG, Hao-nan DI, Xiao-zhen ZHAN, Jun-yan CHEN, Hao CHEN, Xiao-mei YAN. Exploring the Nanoworld: Development and Single-Particle-Level Characterization of Nano-flow Cytometry Technology[J]. China Biotechnology, 2023, 43(12): 1-13.
[4] Yue-meng LIU, Si-han DONG, Xun-bin WEI. Advances in the Study and Application of in vivo Flow Cytometry[J]. China Biotechnology, 2023, 43(12): 14-23.
[5] Jing SUN, Fang FANG, Shuai TAN, Wan-ling SUN. T Cell Differentiation and Macrophage Polarization in the Aplastic Anemia Mouse Model[J]. China Biotechnology, 2023, 43(12): 145-152.
[6] Xiao-xue XU, Shi-yu TIAN, Hao-jie WEI, Nai-li HU, Lin-yue ZOU, Lu KONG. Quantification of Surface Protein Molecules in Human Lymphocyte Subsets[J]. China Biotechnology, 2023, 43(12): 153-159.
[7] Mu-yang ZHANG, Hong-yan LIAO, Yong-mei JIN, Neng-gang JIANG. Analysis of the Correlation between CD3-/dimCD4+ Mature Lymphocytes in Bone Marrow and Peripheral T-cell Lymphoma[J]. China Biotechnology, 2023, 43(12): 53-59.
[8] Zhi-hong YANG, Ya-qi ZHANG, Yong-ze BAI, Xiu-ying TANG, Yu-ying ZHANG, Xia LI. The Clinical Application Value of Immunophenotype Analysis by Flow Cytometry in the Diagnosis and Treatment of Multiple Myeloma[J]. China Biotechnology, 2023, 43(12): 78-85.
[9] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[10] HE Ling-ling,LUO Ting-ting,CHANG Yan,WANG Ya-zhe,YUAN Xiao-ying,SHI Wei-hua,LAI Yue-yun,SHI Hong-xia,QIN Ya-zhen,HUANG Xiao-jun,LIU Yan-rong. Analysis on the Laboratory Examination Characteristics in 28 Patients with Acute Megakaryoblastic Leukemia[J]. China Biotechnology, 2019, 39(9): 2-10.
[11] ZHAO Si-shu,LIU Lu,LIU Fang,QIU Hai-rong,FAN Lei,LI Jian-yong,WU Yu-jie. Diagnostic Value of CD11c Antigen in Patients with Chronic Lymphocytic Leukemia[J]. China Biotechnology, 2019, 39(9): 19-24.
[12] YUAN Xiao-ying,WANG Ya-zhe,SHI Wei-hua,CHANG Yan,HAO Le,HE Ling-ling,SHI Hong-xia,HUANG Xiao-jun,LIU Yan-rong. Methodological Study on Flow Detection of PNH Clone and Its Clinical Screening Significance[J]. China Biotechnology, 2019, 39(9): 33-40.
[13] HUI Yi-hua,WANG Hai-na,QI Yu-feng,CAO Xue-ling,GUAN Xue-mei,DUAN Jing-jing,DUAN Yi- jun,WANG Yan- feng,SU Wen. Normal Reference Range of Lymphocyte Subsets in Healthy Adults in Shanxi Province[J]. China Biotechnology, 2019, 39(9): 41-49.
[14] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[15] PENG Xian-gui,YANG Wu-chen,LI Jia,GOU Yang,WANG Ping,LIU Si-heng,ZHANG Yun,LI Yi,ZHANG Xi. The Application of Related Cytomorphological Technology in Hematological Neoplasms Research Progress[J]. China Biotechnology, 2019, 39(9): 84-90.