Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (9): 2-10    DOI: 10.13523/j.cb.20190901
Orginal Article     
Analysis on the Laboratory Examination Characteristics in 28 Patients with Acute Megakaryoblastic Leukemia
HE Ling-ling,LUO Ting-ting,CHANG Yan,WANG Ya-zhe,YUAN Xiao-ying,SHI Wei-hua,LAI Yue-yun,SHI Hong-xia,QIN Ya-zhen,HUANG Xiao-jun,LIU Yan-rong()
Institute of Hematology,People Hospital,Peking University,Beijing 100044 ,China
Download: HTML   PDF(592KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To analyze the laboratory characteristics in patients with acute megakaryoblastic leukemia(AMKL).Methods: The immunophenotypes of leukemia cells in 28 patients with AMKL were analyzed by means of 4 tubes of 8 color panel. Meanwhile, bone marrow morphology,cell chemistry,chromosome karyotype and gene were examined.Results: Among 28 AMKL patients, the highest positive rates were macrokaryocyte-associated antibodies: CD41a, CD61, CD42b, CD36. The positive rates were 81.48%, 92.86%, 72.00% and 70.83%, respectively. Among them, 53.57% of the patients expressed CD41a, CD61 and CD42b, and 82.14% of the patients expressed at least two kinds of antibodies. The positive expression rates of CD117, CD34, CD38 and HLA-DR were 64.29%, 42.86%, 64.29% and 46.15% respectively, which were lower in AMKL patients than in non-APL patients (P< 0.01). There was no significant difference between the positive expression rates of CD13 and CD33 in AMKL and non-APL AML patients. CD15, CD64, CD14, CD300e and MPO, cCD79a and cCD3 were all negative. Compared with non-Down syndrome-related AMKL (non-DS-AMKL), the expression of CD7 and CD11b was higher in Down syndrome-related AMKL (DS-AMKL) (P < 0.05). Among AMKL patients, 17 (65.4%) had complex chromosome karyotypes and 5 had + 21 chromosome abnormalities; only 5 had normal karyotypes. Twenty-five leukemia patients were screened for fusion genes. WT1 gene expression increased in 24 patients (96%) and 12 patients (70.58%) with EVI1 gene expression increased (53.93 < 37.98%). Four patients were positive for fusion genes (2 MLL-AF9, 1 TLS-ERG and 1 P210 BCL/ABL).Conclusion: 82.14% of AMKL patients express at least two megakaryocyte-related markers. The expression of myeloid progenitor cell markers is relatively low, most of which are complex chromosomal karyotype abnormalities. The abnormal expression rates of WT1 and EVI1 are higher.



Key wordsAcute megakaryoblastic leukemia      Immunophenotype      Flow cytometry     
Received: 15 August 2019      Published: 20 September 2019
ZTFLH:  Q291  
Corresponding Authors: Yan-rong LIU     E-mail: yrliu163@163.com
Cite this article:

HE Ling-ling,LUO Ting-ting,CHANG Yan,WANG Ya-zhe,YUAN Xiao-ying,SHI Wei-hua,LAI Yue-yun,SHI Hong-xia,QIN Ya-zhen,HUANG Xiao-jun,LIU Yan-rong. Analysis on the Laboratory Examination Characteristics in 28 Patients with Acute Megakaryoblastic Leukemia. China Biotechnology, 2019, 39(9): 2-10.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190901     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I9/2

抗体 抗体表达强度
强阳性(≥80%) 弱阳性(20%~80%) 阳性(≥20%)
CD41a 32.14(9) 46.43(13) 78.57(22/28)
CD61 21.42(6) 71.43(20) 92.86(26/28)
CD42b 21.43(6) 42.86(12) 64.29(18/28)
CD36 36.00(9) 32.00(8) 68.00(17/25)
CD34 21.43(6) 21.43(6) 42.86(12/28)
CD117 28.57(8) 35.71(10) 64.29(18/28)
CD38 39.29(11) 28.57(8) 67.86(19/28)
CD123 38.46(10) 11.54(3) 50.00(13/26)
HLA-DR 11.54(3) 34.62(9) 46.15(12/26)
CD33 60.71(17) 21.43(6) 82.14(23/28)
CD13 32.14(9) 17.86(5) 50.00(14/28)
CD7 10.71(3) 25.00(7) 35.71(10/28)
CD56 21.43(6) 7.14(2) 28.57(8/28)
CD11b 3.70(1) 29.63(8) 33.33(9/27)
CD11c 4.17(1) 12.50(3) 16.67(4/24)
CD4 17.39(4) 39.13(9) 56.52(13/23)
CD19 0(0) 7.14(2) 7.14(2/28)
CD10 0(0) 14.29(4) 14.29(4/28)
CD2 3.85(1) 3.85(1) 7.69(2/26)
Table 1 The positive expression rates of antibodies in 28 patients with AMKL
巨核细胞特异性抗体 AMKL
阳性率(%) 异常巨核细胞占有核细胞比例(%)
CD41a+CD61+CD42b+ 53.57(15/28) 71.62(23.10~100.00)
CD41a+CD61+CD42b- 21.43(6/28) 54.63(30.01~81.30)
CD41a-CD61+CD42b+ 3.57(1/28) 50.00
CD41a+CD61-CD42b+ 3.57(1/28) 65.50
CD41a-CD61+CD42b- 14.29(4/28) 71.73(50.3~100.00)
CD41a-CD61-CD42b+ 3.57(1/28) 68.20
Table 2 The positive expression rates of different macrokaryocyte-associated antibody groups in 28 patients with AMKL
组别 CD117 CD34 HLA-DR CD38 CD13 CD33
非APL AML 94.85* 74.02* 90.67* 97.78* 66.42 79.51
(387/408) (302/408) (350/386) (132/135) (269/405) (322/405)
AMKL 64.29 42.86 46.15 64.29 50.00 82.14
(18/28) (12/28) (12/26) (18/28) (14/28) (23/28)
组别 CD64 CD11b CD15 CD19 CD56 CD7
非APL AML 55.15* 27.38 39.58* 11.28 39.07 29.25
(209/379) (89/325) (19/48) (45/399) (59/151) (117/400)
AMKL 0 33.33 0 7.14 28.57 35.71
(0/28) (9/27) (0/27) (2/28) (8/28) (10/28)
Table 3 The comparison of antigen expression in non-APL AML and AMKL patients
Fig.1 Blasts with megakaryocytes
序号 性别 年龄
(岁)
骨髓增生
活跃程度
巨幼细胞
(%)
融合基因
X/abl(%)
染色体核型
1 0.1 38 WT1 38.0
EVI1 78.9
47,XX,t(3;12;16)(q26;13;24),der(17)t(1;17)(q21;p13),+21 [4] /47,idem,t(1,3)(q25;q21)[19]
2 0.6 83 WT1 32.1 46,XY[16]
3 0.9 38 WT1 24.8 48,XX,+2,del(15)(q15;q24),+19[10]
4 1.0 74 WT1 1.3
EVI1 49.8
46,Y,del(X)(q22),add(2)(q24),-7,del(9)(q22;q32),16qh+c,+mar1[3]/46,Y,-X,add(2)(q24),-7,del(9)(q22;q32),16qh+c,+mar1,+mar2[1]/46,XY, 16qh+c[7] 16qh+考虑为体质性异常
5 1.0 86 WT1 16.6 47,XX,-7,+21,+21[5]/47,XX,der(7;18)(q10;q10),+21,+21[9]
6 1.0 64 WT1 88.8 46,XY,add(9)(q34)[8]/46,idm,del(20)(p11)[2]
7 1.0 Ⅱ-Ⅲ 56 WT1 20.6 46,XY,del(13)(q12;q22)[2]/46,Y,t(X;12)(p11;q15),del(13)(q12;q22) [7]/46,XY, [1]
8 1.0 31 WT1 20.4
EVI1 36.1
48,XX,del(7)(q31),del(8)(q21;q22),+9,der(9),del(9)(q11;q13),del(9)(q22;q34)X2,+19[6]/47,idem,-21[6] /46,XX[8]
序号 性别 年龄
(岁)
骨髓增生
活跃程度
巨幼细胞
(%)
融合基因
X/abl(%)
染色体核型
9 1.0 22 MLL-AF9 8.4
WT1 6.1
EVI1 122.6
46,XY[16]
10 1.1 30 WT1 2.4
EVI1 61.9
48,XY,add(3)(p25),del(5)(q22;q35),+19,+mar[5]/48,idm,add(3)(q11)[8]/47,XY,add(3)(p25),del(5)(q22;q35),del(12)(p11),+19[2]/47,XY,der(3)add(3)(p25)add(3)(q11),del(5)(q22;q35),+19[5]/46,XY[4]
11 1.5 56 MLL-AF9 0.17 46,XY [20]
12 1.9 50 WT1 9.7
EVI1 101.3
49,XY,+4,+8,+10[1]/46,XY[2]
13 1.9 56 WT1 185.6 46,XY, [20]
14 2.0 39 WT1 16.0 50,XX,+8,+10,+21,+21[7]/46,XX[13]
15 2.0 Ⅱ-Ⅲ 35 WT1 10.0
EVI1 19.4
46,XY,t(1;11)(p32;q23),add(3)(q11),t(10;16)(q22;p13),inv(11)(p15;q13),del(20)(q11)[13]/47,XY,t(1;11),add(3),+8,t(10;16),inv(11) [4]/46,XY[3]
16 2.0 76 WT1 20.0
EVI1 96.1
46,XY,add(19)(p13)[1]/46,XY,der(2;3)(q10;p10),+3,inv(12)(q22;q24),15ps+[1]/46,XY[18] 15ps+考虑为体质性异常
17 2.0 31 WT1 57.2 47,XY,del(9)(q22;q32),+19[1]/46,XY[19]
18 2.0 22 - -
19 2.0 89 WT1 217.3 46,XY
20 2.0 81 WT1 33.8
EVI1 13.8
56,XY,+2,+2,+6,+7,+8,+10,+15,+19,+19,+20[10]
21 4.0 Ⅱ-Ⅲ 85 WT1 1.3
PRAME 244.7
45-50,XY,t(4;11)(q21;q23),+7,+8,+del(11)(q23),+del(11)(q23),del(20)(q11),+21 [cp6]
22 9.0 52 - 47,XY,+3 [5]/46,XY [15]
23 27.0 42 - -
24 40.0 97 TLS-ERG 342.2
WT1 141.7
48,Y,del(X)(q22),der(2)t(1;2)(q23;q37),del(9)(q22;q32),+10,-13,+14,t(16;21)(p11;q22),+mar[5]/46,XY, [4]
25 47.0 Ⅲ-Ⅳ 74 WT1 2.4
EVI1 15.7
PRAME 2.0
44-50,XY,+del(1)(p13),del(1)(q21),dic(1;2)(q21;p25),+2,add(4)(p16),+add(4)(p16),-5,+6,der(11),t(1;11)(q21;q23),add(13)(q34),add(15)(p13),+add(15)(p13),dic(17;19)(p13;q13),+18,add(19)(q13),+21,add(22)(p13),+mar\(cp5)/47,XY,+17 [1]/46,XY [9]
26 52.0 71 WT1 5.1
PREAME 2.0
EVI1 14.3
41-42,XY,t(1;5)(q32;q31),t(3;22)(q21;p11),-6,-7,del(8)(q21),add(9)(q34),-12,-14,-17,add(19)(p13),-22,+2mar [cp3]/46,XY [7]
27 62.0 61 WT1 11.2
EVI1 37.3
42-43,XY,+X,+Y,del(1),(q41),add(5)(q11),-7,-9,-13,add(14)(p13),-16,-18,add(18)(p11),-21,+mar1-mar3 [cp10]
28 69.0 21 WT1 3.3
BCR/ABL(P210) 34.9
46,XX,t(9;22;22)(q34;q11;q13)[1]/46,xx,t(9;22)(q34;q11)[5]
Table 4 Morphological classification,immunophenotype , karyotype and gene of the 28 patients with AMKL
[1]   Hama A, Hiroshi Y, Yoshiyuki T , et al. Acute megakaryoblastic leukaemia (AMKL) in children:acomparison of AMKL with and without Down syndrome. British Journal of Haematology, 2008,140(5):552-561.
[2]   Tallman M S, Donna N, John M , et al. Acute megakaryocytic leukemia: the Eastern Cooperative Oncology Group experience. Blood, 2000. 96(7):2405-2411.
[3]   Savasan S, Steven B, Susana C , et al. CD36 (thrombospondin receptor) expression in childhood acute megakaryoblastic leukemia:In vitro drug sensitivity and outcome. Leukemia & Lymphoma, 2009,47(10):2076-2083.
[4]   刘艳荣, 王亚哲, 陈姗姗 , 等. 610例急性髓系白血病免疫表型和白血病相关免疫表型分析. 中华血液学杂志, 2007,28(11):731-736.
[4]   Liu Y R, Wang Y Z, Chen S S , et al. Analysis of immunophenotype and leukemia associated immunophenotypein 610 patients with acute myeloid leukemia. Chin J Hematol, 2007,28(11):731-736.
[5]   Huang S, Yang H, Li Y , et al. Prognostic significance of mixed-lineage leukemia (MLL) gene detected by real-time fluorescence quantitative pcr assay in acute myeloid leukemia. Medical Science Monitor, 2016,22(1):3009-3017.
[6]   欧阳敏, 许兰平, 王昱 , 等, t(16;21)(pll;q22)急性髓系白血病九例报告并文献复习. 中华血液学杂志, 2016,37(3):210-215.
[6]   Ouyang M, Xu L P, Wang Y , et al. Clinical characteristics of acute myeloid leukemia with t(16;21)(p11;q22):nine cases report and literature review. Chin J Hematol, 2016,37(3):210-215.
[7]   Chisholm K M, Rivetta C V, Heerema M . PRAME immunohistochemical staining in transient abnormal myelopoiesis and myeloid leukemia associated with Down syndrome. Ann Clin Lab Sci, 2015,45(2):121-127.
[8]   Qin Y, Zhu H, Jiang B , et al. Expression patterns of WT1 and PRAME in acute myeloid leukemia patients and their usefulness for monitoring minimal residual disease. Leukemia Research, 2009. 33(3):384-390.
doi: 10.1016/j.leukres.2008.08.026
[9]   Wang L, John M P, Franklin F , et al. Acute megakaryoblastic leukemia associated with trisomy 21 demonstrates a distinct immunophenotype. Cytometry Part B: Clinical Cytometry, 2015,88(4):244-252.
[10]   Malinge S , Shai Izraeliand J D,Crispino. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood, 2009,113(12):2619-2628.
[11]   Teruschka C, Ntsakisi I M, Zaheer L , et al. Acute megakaryoblastic leukaemia: light microscopy and scanning electron microscopy of blast cells. British Journal of Haematology, 2017,176(5):686-686.
[12]   Bluteau D, Lordier L, Distefano A , et al. Regulation of megakaryocyte maturation and platelet formation. Journal of Thrombosis and Haemostasis, 2009,7(Suppl.1):227-234.
[13]   Bourquin J P, Aravind S, Claudia L , et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(9):3339-3344.
[14]   Elizabeth M, Jad S, Julia T G , et al. A Novel variant t(1;22) translocation -ins(22;1)(q13;p13p31)-in a child with acute megakaryoblastic leukemia. American Journal of Case Reports, 2017,18(1):422-426.
[15]   Erin E D, Erica K S, Alexandra M S , et al. Acute megakaryoblastic leukemia with diffuse periosteal reaction of bilateral lower extremities. Journal of Pediatric Hematology/ Oncology, 2019. 41(2):e90-e93.
[16]   Wen Q, Benjamin G, Serena J , et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell, 2012. 150(3):575-589.
doi: 10.1016/j.cell.2012.06.032
[17]   Federico D M, Marito A, Norio K . Molecular features, prognosis, and novel treatment options for pediatric acute megakaryoblastic leukemia. Expert Review of Hematology, 2019,12(5):285-293.
[18]   Sun X, Lu B, Han C , et al. ANP32A dysregulation contributes to abnormal megakaryopoiesis in acute megakaryoblastic leukemia. Blood Cancer Journal, 2017,7(12):661.
[19]   Meyer C, Hofmann J, Burmeister T , et al. The MLL recombinome of acute leukemias in 2013. Leukemia, 2013,27(1):2165-2176.
[20]   Inaba H, Zhou Y, Abla O , et al. Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia:a retro-spective international study. Blood, 2015,126(13 ): 1575-1584.
[21]   Junko T, Ai M, Katsuyoshi K , et al. Acute megakaryoblastic leukemia in a child with the MLL-AF4 fusion gene. European Journal of Haematology, 2009,83(2):149-153.
[22]   Dong W J, Myungshin K, Jihyang L , et al. CD56 antigen expression and hemophagocytosis of leukemic cells in acute myeloid leukemia with t(16;21)(p11;q22). International Journal of Hematology, 2010,92(2):306-313.
doi: 10.1007/s12185-010-0650-5
[23]   Delia D, Liana O, Ana-Maria R , et al. Adult acute megakaryoblastic leukemia: rare association with cytopenias of undetermined significance and p210 and p190 BCR-ABL transcripts. OncoTargets and Therapy, 2017,10(1):5047-5051.
[24]   Xiao M, Zhang N, Liu Y , et al. De novo acute megakaryoblastic leukemia with p210 BCR/ABL and t(1;16) translocation but not t(9;22) Ph chromosome. Journal of Hematology & Oncology, 2011,4(5):45-51.
[25]   Jochen G, Mark R, Oliver S , et al. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Experimental Hematology, 2000,28(12):1413-1422.
[1] ZHAO Si-shu,LIU Lu,LIU Fang,QIU Hai-rong,FAN Lei,LI Jian-yong,WU Yu-jie. Diagnostic Value of CD11c Antigen in Patients with Chronic Lymphocytic Leukemia[J]. China Biotechnology, 2019, 39(9): 19-24.
[2] YUAN Xiao-ying,WANG Ya-zhe,SHI Wei-hua,CHANG Yan,HAO Le,HE Ling-ling,SHI Hong-xia,HUANG Xiao-jun,LIU Yan-rong. Methodological Study on Flow Detection of PNH Clone and Its Clinical Screening Significance[J]. China Biotechnology, 2019, 39(9): 33-40.
[3] HUI Yi-hua,WANG Hai-na,QI Yu-feng,CAO Xue-ling,GUAN Xue-mei,DUAN Jing-jing,DUAN Yi- jun,WANG Yan- feng,SU Wen. Normal Reference Range of Lymphocyte Subsets in Healthy Adults in Shanxi Province[J]. China Biotechnology, 2019, 39(9): 41-49.
[4] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[5] PENG Xian-gui,YANG Wu-chen,LI Jia,GOU Yang,WANG Ping,LIU Si-heng,ZHANG Yun,LI Yi,ZHANG Xi. The Application of Related Cytomorphological Technology in Hematological Neoplasms Research Progress[J]. China Biotechnology, 2019, 39(9): 84-90.
[6] WEI Jin-mei, FAN Xiao-qin, XIONG Hai-ting, GAO Xue-juan, LIU Xiao-hui, LIU Lang-xia. hnRNPK Interacts with Nef and Facilitates the Cell Surface Expression of CD4[J]. China Biotechnology, 2015, 35(4): 17-22.
[7] . Effects of Serum Deprivation,Confluence and Cycloheximide[J]. China Biotechnology, 2008, 28(12): 57-61.
[8] . Effect of flow cytometrically-sorted sperm on chromosomes of bovine blastocysts produced in vitro[J]. China Biotechnology, 2007, 27(1): 98-101.
[9] . The investigation of the effect on human Hepatoma Cell apoptosis induced by Resibufogenin[J]. China Biotechnology, 2006, 26(06): 36-39.