Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (12): 14-23    DOI: 10.13523/j.cb.2310063
    
Advances in the Study and Application of in vivo Flow Cytometry
LIU Yue-meng,DONG Si-han,WEI Xun-bin()
Peking University Health Science Center Institute of Medical Technology, Beijing 100191, China
Download: HTML   PDF(1092KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Flow cytometry (FCM) is a widely used single-cell analysis technique in biological research due to its ability to simultaneously and quantitatively analyze and sort cells or biological particles with multiple parameters in a fast linear flow state. Conventional FCM based on fluorescence has been developed for over 50 years and is a mature technology. However, it requires invasive blood sampling, which disrupts the organism’s physiological environment and limits real-time detection. The in vivo flow cytometry (IVFC) is an emerging technology that enables non-invasive detection of cell samples within living organisms. Through the principles of fluorescence excitation, photoacoustic effect, and photothermal effect, various IVFC techniques have been developed. The basic principles and development of different types of IVFC techniques are summarized and compared with the basic parameters, and the research findings on circulating tumor cells and the current research results of novel label-free assays are reviewed with the aim to show the current development trends and application prospects of IVFC.



Key wordsIn vivo flow cytometry      Circulating tumor cells      Label-free imaging     
Received: 14 October 2023      Published: 16 January 2024
ZTFLH:  Q2-3  
Cite this article:

Yue-meng LIU, Si-han DONG, Xun-bin WEI. Advances in the Study and Application of in vivo Flow Cytometry. China Biotechnology, 2023, 43(12): 14-23.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2310063     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I12/14

Fig.1 Schematic of the optical path structure of the first fluorescent in vivo flow cytometer[12] The beam of the 632.8 nm He-Ne Laser has a cylindrical lens shaping and passes through a mechanical slit. The beam is focused through the microscope objective, and the laser beam size at the focal plane is approximately 5 μm×72 μm. The fluorescence that occurs is collected by the microscope objective, passed through a dichroic mirror and slit, and the fluorescence is detected by a photomultiplier tube.
Fig.2 Principle of photoacoustic IVFC[10] When a cell passed through the laser beam, acoustic waves are generated. By detecting and analyzing signals of acoustic waves, cell types can be distinguished. Figure reused with permission ? 2011 John Wiley and Sons. [Color figure can be viewed at wileyonlinelibrary.com]
种类 具体名称及来源 探测深度 检测速度 荧光团或造影剂
荧光活体流式细胞术 IVFC[12] 约50 μm 100 KHz DiD标记红细胞
multiphoton intravital FC[22] N/A 78 MHz DiIC18标记红细胞、叶酸染料结合物标记CTCs
光声活体流式细胞术 PAFC[25] 约30~100 μm 10 Hz 金纳米棒(GNs)标记的人循环癌细胞(SQ20B)
advanced PAFC[29] 5~6 mm 10 KHz 白细胞血栓(CBCs)
图像活体流式细胞术 CV-IVFC[33] 241 μm 19 Hz DID标记的多发性骨髓瘤细胞
Image IVFC[37] N/A N/A 绿色和红色荧光对应的DCs和CTCs
Table 1 Comparison of flow cytometry parameters of different species in vivo
Fig.3 CTC counts exhibited circadian oscillation in mice monitored by fluorescence IVFC[54] (a-g) Changes in the number of CTCs in response to circadian rhythms in mice and the highest and lowest values of the number of CTCs in mice with different rhythms (h) Differences in signaling during the passage of individual CTC cells and clusters of CTC cells (i) Daily variations in the number of individual CTCs and clusters of CTCs detected in mice in the 12/12 LD condition
[1]   Shapiro H M. Practical flow cytometry. 4th ed. Hoboken: John Wiley & Sons Inc., 2005.
[2]   Crosland-Taylor P J. A device for counting small particles suspended in a fluid through a tube. Nature, 1953, 171(4340): 37-38.
[3]   Crissman H A, Steinkamp J A. Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. The Journal of Cell Biology, 1973, 59(3): 766-771.
doi: 10.1083/jcb.59.3.766
[4]   Dell’orco R T, Crissman H A, Steinkamp J A, et al. Population analysis of arrested human diploid fibroblasts by flow microfluorometry. Experimental Cell Research, 1975, 92(2): 271-274.
pmid: 1132431
[5]   Adan A, Alizada G, Kiraz Y, et al. Flow cytometry: basic principles and applications. Critical Reviews in Biotechnology, 2017, 37(2): 163-176.
doi: 10.3109/07388551.2015.1128876 pmid: 26767547
[6]   Brown M, Wittwer C. Flow cytometry: principles and clinical applications in hematology. Clinical Chemistry, 2000, 46(8): 1221-1229.
doi: 10.1093/clinchem/46.8.1221
[7]   Craig F E, Foon K A. Flow cytometric immunophenotyping for hematologic neoplasms. Blood, 2008, 111(8): 3941-3967.
doi: 10.1182/blood-2007-11-120535 pmid: 18198345
[8]   Haynes J L. Principles of flow cytometry. Cytometry, 1988, 9(S3): 7-17.
[9]   Prussin C. Cytokine flow cytometry: understanding cytokine biology at the single-cell level. Journal of Clinical Immunology, 1997, 17(3): 195-204.
pmid: 9168399
[10]   Tuchin V V, Tárnok A, Zharov V P. In vivo flow cytometry: a horizon of opportunities. Cytometry Part A, 2011, 79A(10): 737-745.
doi: 10.1002/cyto.a.v79a.10
[11]   Irene G, Nicolas S, John N, et al. In vivo flow cytometry: a new method for enumerating circulating cancer cells. Cancer Research, 2004, 64(15): 5044-5047.
doi: 10.1158/0008-5472.CAN-04-1058
[12]   Novak J, Georgakoudi I, Wei X, et al. In vivo flow cytometer for real-time detection and quantification of circulating cells. Optics Letters, 2004, 29(1): 77-79.
pmid: 14719666
[13]   Wei X B, Sipkins D A, Pitsillides C M, et al. Real-time detection of circulating apoptotic cells by in vivo flow cytometry. Molecular Imaging, 2005, 4(4): 7290.2005.05148.
[14]   Zharov V P, Galanzha E I, Tuchin V V. Photothermal image flow cytometry in vivo. Optics Letters, 2005, 30(6): 628.
doi: 10.1364/OL.30.000628
[15]   Hartmann C, Patil R, Lin C P, et al. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects. Physics in Medicine & Biology, 2017, 63(1): 01TR01.
[16]   Pitsillides C M, Runnels J M, Spencer J A, et al. Cell labeling approaches for fluorescence-based in vivo flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79(10): 758-765.
[17]   Galanzha E I, Zharov V P. In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters. Cytometry Part A, 2011, 79A(10): 746-757.
doi: 10.1002/cyto.a.v79a.10
[18]   Galanzha E I, Zharov V P. Photoacoustic flow cytometry. Methods, 2012, 57(3): 280-296.
doi: 10.1016/j.ymeth.2012.06.009 pmid: 22749928
[19]   Galanzha E I. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening. World Journal of Gastroenterology, 2007, 13(2): 192.
doi: 10.3748/wjg.v13.i2.192
[20]   Zharov V P, Galanzha E I, Tuchin V V. Integrated photothermal flow cytometry in vivo. Journal of Biomedical Optics, 2005, 10(5): 051502.
doi: 10.1117/1.2070167
[21]   Zharov V P, Galanzha E I, Tuchin V V. In vivo photothermal flow cytometry: imaging and detection of individual cells in blood and lymph flow. Journal of Cellular Biochemistry, 2006, 97(5): 916-932.
doi: 10.1002/jcb.v97:5
[22]   He W, Wang H F, Hartmann L C, et al. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(28): 11760-11765.
[23]   Suo Y Z, Liu T, Xie C Y, et al. Near infrared in vivo flow cytometry for tracking fluorescent circulating cells. Cytometry Part A, 2015, 87(9): 878-884.
doi: 10.1002/cyto.a.v87.9
[24]   Ding Y M, Wang J, Fan Z C, et al. Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents. Biomedical Optics Express, 2013, 4(11): 2518-2526.
doi: 10.1364/BOE.4.002518
[25]   Zharov V P, Galanzha E I, Shashkov E V, et al. In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents. Optics Letters, 2006, 31(24): 3623.
doi: 10.1364/OL.31.003623
[26]   Zharov V P, Shashkov E V, et al. Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. Journal of Biomedical Optics, 2007, 12(5): 051503.
doi: 10.1117/1.2793746
[27]   Liu R R, Wang C, Hu C, et al. In vivo, label-free, and noninvasive detection of melanoma metastasis by photoacoustic flow cytometry//Chen W R, Biophotonics and immune responses IX. San Francisco: SPIE BIOS, 2014: 89440Q.
[28]   Yang P, Liu R R, Niu Z Y, et al. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry//Chen W R, Biophotonics and immune responses X. San Francisco: SPIE BIOS, 2015: 93240G.
[29]   Juratli M A, Menyaev Y A, Sarimollaoglu M, et al. Noninvasive label-free detection of circulating white and red blood clots in deep vessels with a focused photoacoustic probe. Biomedical Optics Express, 2018, 9(11): 5667.
doi: 10.1364/BOE.9.005667 pmid: 30460154
[30]   Galanzha E I, Shashkov E V, Tuchin V V, et al. In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes. Cytometry Part A, 2008, 73A(10): 884-894.
doi: 10.1002/cyto.a.v73a:10
[31]   Galanzha E I, Shashkov E V, Spring P M, et al. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Research, 2009, 69(20): 7926-7934.
doi: 10.1158/0008-5472.CAN-08-4900 pmid: 19826056
[32]   Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 2009, 458(7242): 1145-1149.
doi: 10.1038/nature07980
[33]   Markovic S, Li B L, Pera V, et al. A computer vision approach to rare cell in vivo fluorescence flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83(12): 1113-1123.
doi: 10.1002/cyto.a.v83.12
[34]   Markovic S, Li S Y, Niedre M J. Performance of computer vision in vivo flow cytometry with low fluorescence contrast. Journal of Biomedical Optics, 2015, 20(3): 035005.
[35]   Cao Q Z, Cai W B, Li Z B, et al. PET imaging of acute and chronic inflammation in living mice. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34(11): 1832-1842.
pmid: 17541586
[36]   Knosp C A, Carroll H P, Elliott J, et al. SOCS2 regulates T helper type 2 differentiation and the generation of type 2 allergic responses. The Journal of Experimental Medicine, 2011, 208(7): 1523-1531.
doi: 10.1084/jem.20101167
[37]   Zeng X J, Wei D, Wei X B. Background modeling method to identify interactions between circulating tumor cells and dendritic cells//Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu: IEEE, 2018: 806-809.
[38]   Chhikara B S and Parang K. Global Cancer Statistics 2022: the trends projection analysis. Chemical Biology Letters, 2023, 10(1): 451.
[39]   Sipkins D A, Wei X B, Wu J W, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 2005, 435(7044): 969-973.
doi: 10.1038/nature03703
[40]   Alsayed Y, Ngo H, Runnels J, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood, 2007, 109(7): 2708-2717.
doi: 10.1182/blood-2006-07-035857 pmid: 17119115
[41]   Runnels J M, Carlson A L, Pitsillides C, et al. Optical techniques for tracking multiple myeloma engraftment, growth, and response to therapy. Journal of Biomedical Optics, 2011, 16(1): 011006.
[42]   Maryamchik E, Gallagher K M E, Preffer F I, et al. New directions in chimeric antigen receptor T cell [CAR-T] therapy and related flow cytometry. Cytometry Part B: Clinical Cytometry, 2020, 98(4): 299-327.
doi: 10.1002/cyto.v98.4
[43]   Nedosekin D A, Sarimollaoglu M, Ye J H, et al. In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79(10): 825-833.
[44]   Nedosekin D A, Juratli M A, Sarimollaoglu M, et al. Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo. Journal of Biophotonics, 2013, 6(6-7): 523-533.
doi: 10.1002/jbio.201200242 pmid: 23681943
[45]   Menyaev Y A, Nedosekin D A, Sarimollaoglu M, et al. Optical clearing in photoacoustic flow cytometry. Biomedical Optics Express, 2013, 4(12): 3030-3041.
doi: 10.1364/BOE.4.003030 pmid: 24409398
[46]   Galanzha E, Zharov V. Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo. Cancers, 2013, 5(4): 1691-1738.
doi: 10.3390/cancers5041691
[47]   Sarimollaoglu M, Nedosekin D A, Menyaev Y A, et al. Nonlinear photoacoustic signal amplification from single targets in absorption background. Photoacoustics, 2014, 2(1): 1-11.
doi: 10.1016/j.pacs.2013.11.002 pmid: 24921062
[48]   Juratli M A, Menyaev Y A, Sarimollaoglu M, et al. Real-time label-free embolus detection using in vivo photoacoustic flow cytometry. PLoS One, 2016, 11(5): e0156269.
doi: 10.1371/journal.pone.0156269
[49]   Galanzha E I, Menyaev Y A, Yadem A C, et al. In vivo liquid biopsy using Cytophone platform for photoacoustic detection of circulating tumor cells in patients with melanoma. Science Translational Medicine, 2019, 11(496): eaat5857.
doi: 10.1126/scitranslmed.aat5857
[50]   Kozlova A, Bratashov D, Grishin O, et al. Dynamic blood flow phantom for in vivo liquid biopsy standardization. Scientific Reports, 2021, 11: 1185.
doi: 10.1038/s41598-020-80487-8
[51]   Jawad H J, Yadem A C, Menyaev Y A, et al. Towards rainbow portable Cytophone with laser diodes for global disease diagnostics. Scientific Reports, 2022, 12(1): 1-17.
doi: 10.1038/s41598-021-99269-x
[52]   He Y, Wang L D, Shi J H, et al. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells. Scientific Reports, 2016, 6(1): 1-8.
doi: 10.1038/s41598-016-0001-8
[53]   He Y, Wang L D, Shi J H, et al. Real-time photoacoustic flow cytography and photothermolysis of single circulating melanoma cells in vivo//Oraevsky A A, Wang L V, Photons Plus Ultrasound: Imaging and Sensing 2017. San Francisco, California: SPIE BiOS, 2017: 100641E.
[54]   Zhu X, Suo Y Z, Fu Y T, et al. In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells. Light: Science & Applications, 2021, 10(1): 1-10.
[55]   Kobayashi H, Lei C, Wu Y, et al. Intelligent whole-blood imaging flow cytometry for simple, rapid, and cost-effective drug-susceptibility testing of leukemia. Lab on a Chip, 2019, 19(16): 2688-2698.
doi: 10.1039/c8lc01370e pmid: 31287108
[56]   Shrirao A B, Schloss R S, Fritz Z, et al. Autofluorescence of blood and its application in biomedical and clinical research. Biotechnology and Bioengineering, 2021, 118(12): 4550-4576.
doi: 10.1002/bit.27933 pmid: 34487351
No related articles found!