Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (3): 144-153    DOI: OI:10.13523/j.cb.1907021
Orginal Article     
Research Progress on the Biological Fermentation of Xylitol
WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai()
Key Laboratory of Biofuels and Biochemical Engineering, Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116045, China
Download: HTML   PDF(545KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Xylitol is widely used in various fields because of its special physical and chemical properties, the global demand is increasing day by day. At present, the industrial production method of xylitol is produced by pure D-xylose under high temperature and pressure by chemical catalysis. There are many problems such as high requirements for raw materials, high energy consumption, rigorous conditions and heavy pollution. Biological fermentation technology can produce xylitol from low-cost crop waste fermented by strains. It has attracted much attention because of its wide source of raw materials, low energy consumption, mild condition and friendly environment, is a potentially attractive alternative to chemical processes. However, due to the low content of xylitol in fermentation products, the route of microbial fermentation to prepare xylitol has not been practiced in industry. The influencing factors in the process of bio-synthesis of xylitol and the possible technology of strain modification were reviewed. The challenges and prospects of bioproduction of xylitol were presented, and the research direction of biosynthesis of xylitol was prospected.



Key wordsMicroorganism      Fermentation      Xylitol     
Received: 10 July 2019      Published: 18 April 2020
ZTFLH:  Q815  
Corresponding Authors: Chang-hai CAO     E-mail: fshy@sinopec.com
Cite this article:

WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol. China Biotechnology, 2020, 40(3): 144-153.

URL:

https://manu60.magtech.com.cn/biotech/OI:10.13523/j.cb.1907021     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I3/144

发酵菌种 底物及木糖初始浓度 (g/L) 木糖醇产量(g/L) 产率[g/(L·h)] 参考文献
Candida guilliermondii
FTI 20037
sucrose supplementation of sugarcane straw
57
36.11 0.75 [13]
Candida tropicalis
CLQCA-24SC-125
sugarcane bagasse hemicellulose hydrolysate
49.7
24 0.33 [14]
Candida athensensis SB18 xylose
250
207.8 1.15 [15]
Kluyveromyces sp. IIPE453 bagasse hydrolysate
25
18.7 0.61 [16]
Debaryomyces nepalensis NCYC 3413 xylose
100
36 0.3 [17]
Hansunela anomala NCAIM Y.01499 xylose
50
21.7 0.23 [18]
Table 1 Comparison of xylitol production from different substrates by yeasts
Fig.1 Xylose and glucose metabolic pathway in yeast
[1]   Jain H, Mulay S . A review on different modes and methods for yielding a pentose sugar: xylitol. International Journal of Food Science and Nutrition, 2014,65(2):135-143.
[2]   Lugani Y , Sooch B S. Fungal Biorefineries. Switzerland: Springer Cham, 2018: 121-144.
[3]   Elamin K, Sj?str?m J, Jansson H , et al. Calorimetric and relaxation properties of xylitol-water mixtures. Journal of Chemical Physics, 2012,136(10):104508.
[4]   Ur-Rehman S, Mushtaq Z, Zahoor T , et al. Xylitol: A review on bioproduction, application, health benefits, and related safety issues. Critical Reviews in Food Science and Nutrition, 2015,55(11):1514-1528.
[5]   Zhang H C , Rindt C C M,Smeulders D M J , et al Nanoscale heat transfer in carbon nanotubes-sugar alcohol composite as heat storage materials. The Journal of Physical Chemistry C, 2016,120(38):21915-21924.
[6]   Dasupta D, Ghosh D, Bandhu S , et al. Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453. Microbiological Research, 2017,200:64-72.
[7]   Cheng K K, Wu J, Lin Z N , et al. Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnology for Biofuels, 2014,7:166.
[8]   Boonmee A . Hydrolysis of various thai agricultural biomasses using the crude enzyme from Aspergillus aculeatus iizuka FR60 isolated from soil. Brazilian Journal of Microbiology, 2012,43(2):456-466.
[9]   Su B, Wu M, Lin J , et al. Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars. Biotechnology Letters, 2013,35(11):1781-1789.
[10]   Wei J, Yuan Q, Wang T , et al. Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Frontiers of Chemical Science and Engineering, 2010,4(1):57-64.
[11]   Martínez E A, Canettieri E V , Bispo J A C, et al. Strategies for xylitol purification and crystallization: a review. Separation Science and Technology, 2015,50(14):2087-2098.
[12]   Sena L M F, Morais C G, Lopes M R , et al. D-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella. Antonie Van Leeuwenhoek, 2017,110(1):53-67.
[13]   Costa I A L, Hernándz-Pérez A F, Silva D D V , et al. Biochemical conversion of sugarcane straw hemicellulosic hydrolysate supplemented with co-substrates for xylitol production. Bioresource Technology, 2016,200:1085-1088.
[14]   Guamán-Burneo M C, Dussán K J, Cadete R M , et al. Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov. Antonie Van Leeuwenhoek, 2015,108(4):919-931.
[15]   Zhang J, Geng A, Yao C , et al. Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresource Technology, 2012,105:134-141.
[16]   Kumar S, Dheeran P, Singh S P , et al. Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess and Biosystems Engineering, 2015,38(1):39-47.
[17]   Kumdam H B, Murthy S N, Gummadi S N . A statistical approach to optimize xylitol production by Debaryomyces nepalensis NCYC 3413 in vitro. Food and Nutrition Sciences, 2012,3(8):1027-1036.
[18]   Zoltán M, Anikó F, Csaba F , et al. Effects of pH and aeration conditions on xylitol production by Candida and Hansenula yeasts. Periodica Polytechnica Chemical Engineering, 2016,60(1):54-59.
[19]   杨其义 . 木糖醇生产菌株的筛选及工艺优化. 济南:齐鲁工业大学, 2013.
[19]   Yang Q Y . Screening of xylitol-producing strains and optimization of fermentation conditions. Jinan: Qilu University of Technology, 2013.
[20]   赵寿经, 侯琨, 梁彦龙 , 等. 产木糖醇菌株的筛选及发酵条件优化. 吉林大学学报, 2010,40(3):868-872.
[20]   Zhao S J, Hou K, Liang Y L , et al. Screening of xylitol-producing strain and optimization of its fermentation conditions. Journal of Jinlin University, 2010,40(3):868-872.
[21]   Tamburini E, Costa S, Marchetti M , et al. Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules, 2015,5(3):1979-1989.
[22]   冯华良 . 微量通气对马克斯克鲁维酵母发酵木质纤维素水解液的影响. 大连:大连理工大学, 2017.
[22]   Feng H L . Effect of microaeration on fermentation by Kluyveromyces marxianus from lignocellulosic hydrolysates. Dalian: Dalian University of Technology, 2017.
[23]   Ling H, Cheng K, Ge J , et al. Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnology, 2011,28(6):673-678.
[24]   Ghindea R, Csutak O, Stoica I , et al. Production of xylitol by yeasts. Romanian Biotechnological Letters, 2010,15(3):5217-5222.
[25]   De Albuquerque T L, Gomes S D L, Jr Marques J E , et al. Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catalysis Today, 2015,255:33-40.
[26]   Srivani K, Setty Y P . Effect of nitrogen sources on microbial production of xylitol. International Journal of Applied Biology and Pharmaceutical Technology, 2011,2:219-224.
[27]   Rodrussamee N, Lertwattanasakul N, Hirata K , et al. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 2011,90(4):1573-1586.
[28]   Srivani K, Setty Y P . Parametric optimization of xylitol production from xylose by fermentation. Asia-Pacific Journal of Chemical Engineering, 2012,7:280-284.
[29]   Kim T B, Lee Y J, Kim P , et al. Increased xylitol production rate during long-term cell recycle fermentation of Candida tropicalis. Biotechnology Letters, 2004,26(8):623-627.
[30]   Nolleau V, Preziosi-Belloy L, Delgenes J P , et al. Xylitol production from xylose by two yeast strains: sugar tolerance. Current Microbiology, 1993,27(4):191-197.
[31]   曹长海, 张全, 关浩 , 等. 提高木质纤维素酶解糖化效率的研究进展. 中国生物工程杂志, 2015,35(8):126-136.
[31]   Cao C H, Zhang Q, Guan H , et al. Research progress of enhancing enzymatic saccharification efficiency of lignocellulose. China Biotechnology, 2015,35(8):126-136.
[32]   孙晶 . 玉米秸秆酸水解液脱毒发酵产木糖醇的研究. 北京:北京化工大学, 2015.
[32]   Sun J . Study on corn straw hydrolysate detoxification acid fermentation of xylitol. Beijing: Beijing University of Chemical Technology, 2015.
[33]   Kumar V, Krishania M, Sandhu P P , et al. Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresource Technology, 2018,251:416-419.
[34]   Li M, Meng X, Diao E , et al. Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. Journal of Chemical Technology and Biotechnology, 2012,87(3):387-392.
[35]   Rafiqul I S M, Sakinah A M M . Processes for the production of xylitol-a review. Food Reviews International, 2013,29(2):127-156.
[36]   Dalli S S , Da Silva S S,Uprety B K, et al. Enhanced production of xylitol from poplar wood hydrolysates through a sustainable process using immobilized new strain Candida tropicalis UFMG BX-12a. Applied Biochemistry and Biotechnology, 2017,182(3):1053-1064.
[37]   Pappu S M J, Gummadi S N . Effect of cosubstrate on xylitol production by Debaryomyces nepalensis NCYC 3413: a cybernetic modelling approach. Process Biochemistry, 2018,69:12-21.
[38]   Tizazu B Z, Roy K, Moholkar V S . Mechanistic investigations in ultrasound-assisted xylitol fermentation. Ultrasonics Sonochemistry, 2018,48:321-328.
[39]   周龙霞, 王燕, 郭玉蓉 , 等. 等离子诱变选育木糖醇高产菌及发酵条件优化. 中国调味品, 2016,41(12):1-6.
[39]   Zhou L X, Wang Y, Guo Y R , et al. Mutation breeding of high-yield xylitol strain by plasma and optimization of fermentation conditions. China Condiment, 2016,41(12):1-6.
[40]   Saloheimo A, Rauta J, Stasyk V , et al. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Applied Microbiology Biotechnology, 2007,74(5):1041-1052.
[41]   Goncalves D L, Matsushika A, Belisa B , et al. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme and Microbial Technology, 2014,63:13-20.
[42]   Runquist D, Hahn-H?gerdal B, R?dstr?m P . Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 2010,3:5.
[43]   Zhang J, Zhang B, Wang D , et al. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresource Technology, 2015,175:642-645.
[44]   Wang C, Bao X, Li Y , et al. Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metabolic Engineering, 2015,30:79-88.
[45]   Hua Y, Wang J C, Zhu Y L , et al. Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Microbial Cell Factories, 2019,18, 24.
[46]   Jeon W Y, Yoon B H, Ko B S , et al. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess and Biosystems Engineering, 2012,35(1-2):191-198.
[47]   Dasgupta D, Area C, Division B F , et al. Xylitol production from lignocellulosic pentosans: a rational strain engineering approach toward a multiproduct biorefinery. Journal of Agricultural and Food Chenmistry, 2019,67(4):1173-1186.
[48]   王凤梅, 张邦建, 岳泰新 , 等. 转木糖还原酶基因XYL1酿酒酵母的构建及产木糖醇能力研究. 中国酿造, 2018,37(12):72-76.
[48]   Wang F M, Zhang B J, Yue T X , et al. Construction of Saccharomyces cerevisiae with xylose reductase gene XY1 and its xylitol production ability. China Brewing, 2018,37(12):72-76.
[49]   Rao R S, Jyothi C P, Prakasham R S , et al. Strain improvement of Candida tropicalis for the production of xylitol: biochemical and physiological characterization of wild-type and mutant strain CT-OMV5. Journal of Microbiology, 2006,44(1):113-120.
[50]   高雪楠, 张婵, 尹胜 , 等. 葡萄糖-6磷酸脱氢酶基因的Candida tropicalis过量表达及其对木糖醇合成代谢的影响. 食品科学, 2014,35(7):102-105.
[50]   Gao X N, Zhang C, Yin S , et al. Cloning and overexpression of glucose-6-phosphate dehydrogenase in Candida tropicalis and its influence on xylitol biosynthesis. Food Science, 2014,35(7):102-105.
[51]   Jin L Q, Xu W, Yang B , et al. Efficient biosynthesis of xylitol from xylose by coexpression of xylose reductase and glucose dehydrogenase in Escherichia coli. Applied Biochemistry and Biotechnology, 2019,187(4):1143-1157.
[52]   Ko B S, Kim J, Kim J H . Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Applied Environmental Microbiology, 2006,72(6):4207-4213.
[53]   Pal S, Choudhary V, Kumar A , et al. Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresource Technology, 2013,147:449-455.
[54]   Ko B S, Kim D M, Yoon B H , et al. Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Biotechnology Letters, 2011,33(6):1209-1213.
[55]   陈振, 陈献忠, 张利华 , 等. 代谢改造热带假丝酵母发酵木糖母液生产木糖醇. 中国生物工程杂志, 2017,37(5):66-75.
[55]   Chen Z, Chen X Z, Zhang L H , et al. Metabolic engineering of Canadida tropicalis for xyltiol production from xylose mother liquor. China Biotechnology, 2017,37(5):66-75.
[56]   Kogie A, Ghosalkar A . Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech, 2016,6(2):127.
[57]   Guirimand G, Inokuma K, Bamba T , et al. Cell-surface display technology and metabolic engineering of Saccharomyces cerevisiae for enhancing xylitol production from woody biomass. Green Chemistry, 2019,21:1975-1808.
[58]   张哲, 焦静雨, 陈姣 , 等. 重组大肠杆菌的构建及利用木糖生产木糖醇的研究. 高校化学工程学报, 2016,30(4):864-870.
[58]   Zhang Z, Jiao J Y, Chen J , et al. Construction of an engineered Escherichia coli for xylitol production from xylose. Journal of Chemical Engineering of Chinese Universities, 2016,30(4):864-870.
[59]   Dasgupta D, Bandhu S, Adhikari D K , et al. Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiological Research, 2017,197:9-21.
[1] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[2] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[3] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[4] LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms[J]. China Biotechnology, 2021, 41(1): 20-29.
[5] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[6] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[7] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[8] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[9] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[10] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[11] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[12] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[13] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[14] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[15] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.