Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (3): 92-98    DOI: 10.13523/j.cb.20170313
    
Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses
ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong
College of Life Science and Technology, Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
Download: HTML   PDF(417KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Abiotic stresses, such as high salt, drought, low temperature and heavy metal pollution, have seriously affected the growth and reproduction of plants. Meanwhile, plants have evolved a series of various enzymes system against oxidative damage caused by abiotic and biotic stresses. Glutathione S-transferase,which comprise a large superfamily of multifunctional protein, can scavenge reactive oxygen species and protect plant cell membrane structure and protein activity when plants were subjected to high salt, drought and low temperature stresses. The role of GST in plant response to abiotic stress is reviewed, and this will provide valuable information for the plant genetic engineering in the future.



Key wordsPlant      Abiotic stress      Glutathione S-transferase      Oxidative damage     
Received: 27 September 2016      Published: 25 March 2017
ZTFLH:  Q81  
Cite this article:

ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses. China Biotechnology, 2017, 37(3): 92-98.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170313     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I3/92

[1] Sandermann H. Plant metabolism of xenobiotics. Trends in Biochemical Sciences, 1992,17(2):82-84.
[2] Chi Y H, Cheng Y S, Vanitha J, et al. Expansion mechanisms and functional divergence of the glutathione S-transferase family in Sorghum and other higher plants. DNA Research, 2011,18(1):1-16.
[3] Anderson J V, Davis D G. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiologia Plantarum, 2004,120(3):421-433.
[4] Lan T, Yang Z, Yang X, et al. Extensive functional diversification of the Populus glutathione S-transferase supergene family. The Plant Cell, 2009,21(12):3749-3766.
[5] Liu Y, Han X, Ren L, et al. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiology, 2013,161(2):773-786.
[6] Frova C. The plant glutathione transferase gene family:genomic structure, functions, expression and evolution. Physiologia Plantarum, 2003,119(4):469-479.
[7] Dixon D P, Sellars J D, Edwards R. The Arabidopsis phi class glutathione transferase AtGSTF2:binding and regulation by biologically active heterocyclic ligands. Biochemical Journal, 2011,438(1):63-70.
[8] Dixon D P,Cole D J, Edwards R. Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Molecular Biology, 1999,40(6):997-1008.
[9] Sommer A, Böger P. Characterization of recombinant corn glutathione S-transferase isoforms I, II, III, and IV. Pesticide Biochemistry and Physiology, 1999,63(3):127-138.
[10] Marrs K A. The functions and regulation of glutathione S-transferases in plants.Annual Review of Plant Biology, 2003,47(1):127-158.
[11] 余叔文, 汤章城.植物生理与分子生物学. 北京:科学出版社.1998. She S W, Tang Z C. Plant physiology and molecular biology. Beijing:Science Press,1998.
[12] 陈晓亚,汤章城.植物生理与分子生物学.3版.北京:高等教育出版社,2007:329-356. Chen X Y, Tang Z C. Plant Physiology and Molecular Biology. 3rded. Beijing:Higher Education Press, 2007:329-356.
[13] Reinemer P, Dirr H W, Ladenstein R, et al. Three-dimensional structure of class π glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8Å resolution. Journal of Molecular Biology, 1992,227(1):214-226.
[14] Yang G Y, Wang Y C, Xia D, et al. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell, Tissue and Organ Culture (PCTOC), 2014,117(1):99-112.
[15] Xu J, Tian Y S, Xing X J, et al. Over-expression of AtGSTU19 provides tolerance to salt, drought and methyl viologen stresses in Arabidopsis. Physiologia Plantarum, 2016,156(2):164-175.
[16] Jia B, Sun M, Sun X L, et al. Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content. Physiologia Plantarum, 2016,156(2):176-189.
[17] Kao C, Bakshi M, Sherameti I, et al. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. Plant Molecular Biology, 2016,92(6):643-659.
[18] Chan C, Lam H. A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. Plant and Cell Physiology, 2014,55(3):570-579.
[19] Peltzer D,Dreyer E, Polle A. Differential temperature dependencies of antioxidative enzymes in two contrasting species:Fagus sylvatica and Coleus blumei. Plant Physiology and Biochemistry, 2002,40(2):141-150.
[20] Souza R P, Machado E C, Silva J A B, et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 2004,51(1):45-56.
[21] Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants:stomatal and non-stomatal limitations revisited. Annals of Botany, 2002,89(2):183.
[22] Wang Z,Huang S, Jia C, et al. Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish). Plant Cell Reports, 2013,32(9):1373-1380.
[23] Liu D, Liu Y, Rao J, et al. Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants. Molecular Biology, 2013,47(4):515-523.
[24] Xu J, Xing X, Tian Y, et al. Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One, 2015,10(9):e0136960.
[25] Ji W,Zhu Y M,Li Y, et al. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnology Letters, 2010,32(8):1173-1179.
[26] George S,Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. Journal of Plant Physiology, 2010,167(4):311-318.
[27] Plazek A, Zur I. Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Science, 2003,164(6):1019-1028.
[28] 杨德浩, 杨敏生, 王进茂, 等. 欧洲白桦苗期低温胁迫时膜系统的变化. 东北林业大学学报, 2004,32(6):13-15. Yang D H, Yang M S, Wang J M, et al.Europe Birch's membrane system changes under low temperature menace in the period of seedling.Journal of Northeast Forestry University, 2004,32(6):13-15.
[29] Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview. Archives of Biochemistry and Biophysics, 2005,444(2):139-158.
[30] Yang G Y, Xu Z G, Peng S B, et al. In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance. Plant Cell Reports, 2015,35(3):681-692.
[31] Zhao J L, Zhang S H, Yang T F, et al. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiologia Plantarum, 2015.154(3):381-394.
[32] Martret B L,Poage M,Shiel K, et al. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-xidant metabolism and improved abiotic stress tolerance. Plant Biotechnology Journal, 2011,9(6):661-673.
[33] Arduini I, Godbold D L, Onnis A. Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiologia Plantarum, 1996,97(1):111-117.
[34] Moons A. Osgtu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett, 2003,553(3):427-432.
[35] Kumar S,Asif M H,Chakrabarty D, et al. Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses.Journal of Hazardous Materials, 2013,248-249:228-237.
[36] Marrs K A. The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Biology, 1996,47(1):127-158.
[37] Bernard F,Dumez S,Brulle F, et al. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb. Environmental Science and Pollution Research, 2016,23(4):3136-3151.
[38] Yuan J S,Tranel P J,Stewart C N. Non-target-site herbicide resistance:a family business. Trends in Plant Science, 2007,12(1):6-13.
[39] Rea P A. Plant ATP-binding cassette transporters. Annual Review of Plant Biology, 2007,58:347-375.
[40] Schröder P. The Role of Glutathione and Glutathione S-transferases in Plant Reaction and Adaptation to Xenobiotics. In Significance of Glutathione to Plant Adaptation to the Environment. Netherlands:Springer Netherlands, 2001:155-183.
[41] Hayes J D,Flanagan J U,Jowsey I R. Glutathione transferases. Annu Rev Pharmacol Toxicol, 2005,45:51-88.
[42] Sheehan D,Meadeg G, Foley V M. Structure, function and evolution of glutathione transferases:implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 2001,360(1):1-16.
[43] Coleman J,Blake-Kalff M, Davies E. Detoxification of xenobiotics by plants:chemical modification and vacuolar compartmentation. Trends in Plant Science,1997,2(4):144-151.
[44] Dixon D P,Lapthorn A,Edwards R. Plant glutathione transferases. Genome Biology, 2002,3(3):1-10.
[45] Chronopoulou E, Madesis P, Asimakopoulou B, et al. Catalytic and structural diversity of the fluazifop-inducible glutathione transferases from Phaseolus vulgaris. Planta, 2011,235(6):1253-1269.
[46] Cicero L L,Madesis P, Tsaftaris A, et al. Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses. Phytochemistry, 2015,116:69-77.
[47] Jo H J,Lee J J.Kong K H. A plant-specific tau class glutathione S-transferase from Oryza sativa with very high activity against 1-chloro-2, 4-dinitrobenzene and chloroacetanilide herbicides. Pesticide Biochemistry and Physiology, 2011,101(3):265-269.
[48] Kim Y J, Lee O R, Lee S Y, et al. Isolation and characterization of a theta glutathione S-transferase gene from Panax ginseng meyer. Journal of Ginseng Research, 2012,36(4):449-460.
[49] Dourado D F A R, Fernandes P A, Mannervik B, et al. Isomerization of Δ5-androstene-3,17-dione into Δ4-androstene-3,17-dione catalyzed by human glutathione transferase A3-3:a computational study identifies a dual role for glutathione. Journal of Physical Chemistry A, 2014,118(31):5790-5800.
[50] Rahantaniaina M, Tuzet A, Mhamdi A, et al.Missing links in understanding redox signaling via thiol/disulfide modulation:how is glutathione oxidized in plants. Frontiers in Plant Science, 2013,4:1-13.
[51] Zhao J, Dixon R A. The ‘ins’ and ‘outs’ of flavonoid transport. Trends in Plant Science, 2010,15(2):72-80.

[1] LIU Xu-xia,YANG An-ke. An Analysis of the U.S. SECURE Rule and Its Enlightenment to China[J]. China Biotechnology, 2021, 41(9): 126-135.
[2] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[3] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[4] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[5] Jing REN,Wan-nong ZOU,Min SONG. Research on the Changing Trend of the New Pattern of International Seed Industry Competition Formed by the Merger of Multinational Seed Industry Companies——Take Intellectual Property as an Example[J]. China Biotechnology, 2019, 39(7): 108-117.
[6] MA Ya-ting,LIU Zhen-ning,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Advances in Production of Plant Isoquinoline Alkaloids in Heterologous Microbes[J]. China Biotechnology, 2019, 39(11): 123-131.
[7] AN Ming-hui,TIAN Wen,HAN Xiao-xu,SHANG Hong. Construction and Phenotypic Analyses of Recombinant Lactobacillus Expressing Single-Chain Antibody of HIV[J]. China Biotechnology, 2019, 39(10): 1-8.
[8] Zheng-san ZUO,Xiao-man SUN,Lu-jing REN,He HUANG. Improvement of Lipid Accumulation in Microalgae by Novel Cultivation Strategies[J]. China Biotechnology, 2018, 38(7): 102-109.
[9] Jing-xia LI,Hui XIA,Xiu-lan LV,Jin WANG,Dong LIANG. The Metabolism and Regulation of Ascorbic Acid: A Case Study via Model and Horticultural Plant[J]. China Biotechnology, 2018, 38(3): 105-114.
[10] Xu-peng ZHAO,Xiao-peng ZHAO,Hao SHI,Xue-mei CHEN,Ting JIANG,Yan LIU. Establishment of High Frequency Regeneration via Leaf Explants of ‘Guichang’ Kiwifruit (Actinidia chinensis)[J]. China Biotechnology, 2018, 38(10): 48-54.
[11] CHEN Gang, WU Jun, ZHU He, YU Tian-fei. Progress of Stem Cell Therapy in Spinal Cord Injury[J]. China Biotechnology, 2017, 37(2): 88-92.
[12] YAN Peng-cheng, ZHANGY Zhan-jiang, PEI Zhi-yong, FU Yan-ting, CHEN Yu-bao, LIU Tong. Design and Realization of Cloud Platform for Medicinal Plant Conservation[J]. China Biotechnology, 2017, 37(11): 37-44.
[13] CHEN Min, CHEN Hui, BAO Hai, HUANG Peng, WANG Yan-wei. Advances in the Research of miRNA Promoters in Plants[J]. China Biotechnology, 2016, 36(5): 125-131.
[14] WANG Xu-jing, ZHANG Xin, LIU Pei-lei, WANG Zhi-xing. The Application and Safety Assessment of Stacked Transgenic Plant[J]. China Biotechnology, 2016, 36(4): 18-23.
[15] HU Li-li, ZHUO Kan, LIN Bo-rong, LIAO Jin-ling. The Research Progress of Methods on Function Analysis of Effectors from Plant-parasitic Nematode[J]. China Biotechnology, 2016, 36(2): 101-108.