Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (11): 123-131    DOI: 10.13523/j.cb.20191114
    
Advances in Production of Plant Isoquinoline Alkaloids in Heterologous Microbes
MA Ya-ting1,LIU Zhen-ning1,LIU Xue1,YU Hong-jian2,ZHAO Guang-rong1,**()
1 School of Chemical Engineering and Technology, Tianjin University, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300350, China
2 Ubasio Biotech Co. , Ltd. , Tianjin 300450, China
Download: HTML   PDF(979KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Plant isoquinoline alkaloids (PIAs) include morphine, codeine, galantamine, berberine and other pharmaceutically active products. Currently, most high-value PIAs are extracted from plants, which is limited by low concentration in nature, seasonal production and extraction methods. Microbial biosynjournal provides an alternative way to gain PIAs at low cost, however, the long and complex biosynjournal pathways of PIAs bring it many challenges. With the development of synthetic biology and biotechnology, many progresses are made in the pathway elucidations and enzyme identifications, which make it possible to achieve the biosynjournal of PIAs in heterologous microbes. Recent advances in the PIAs pathway elucidations and metabolic engineering in heterologous microbes are reviewed, and current challenges as well as future perspectives are discussed.



Key wordsPlant      isoquinoline      alkaloids      Microbial      synjournal      Synthetic      biology      Metabolic      engineering      Natural      drug     
Received: 23 March 2019      Published: 17 December 2019
ZTFLH:  Q946.88  
Corresponding Authors: Guang-rong ZHAO     E-mail: grzhao@tju.edu.cn
Cite this article:

MA Ya-ting,LIU Zhen-ning,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Advances in Production of Plant Isoquinoline Alkaloids in Heterologous Microbes. China Biotechnology, 2019, 39(11): 123-131.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191114     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I11/123

Fig.1 Biogenesis of PIAs AADC: Amino acid decarboxylase; TYR: Tyrosinase; TH: Tyrosine hydroxylase; NCS: Norcoclaurine synthase; NBS: Norbelladine synthase; 6OMT: (S)-norcoclaurine-6-O-methyltransferase; CNMT: Coclaurine-N-methyltransferase; NMCH: N-methylcoclaurine-3'-hydroxylase; 4'OMT: 4'-O-methyltransferase
Fig.2 BIA gene cluster on chromosome 11 of Opium poppy
Fig.3 Biosynthetic pathway of noscapine BBE: Berberine bridge enzyme; TNMT: Tetrahydroprotoberberine-cis-N-methyltransferase; SOMT: (S)-scoulerine 9-O-methyltransferase; CAS: Canadine synthase; CYP82Y1: N-methylcanadine 1-hydroxylase; CYP82X2: 1-hydroxy-N-methylcanadine-13-hydroxylase; AT1: 1,13-dihydroxy-N-methylcandine 13-O-acetyltransferase; CYP82X1: 1-hydroxy-13-O-acetyl-N-methylcanadine 8-hydroxylase; MT2/MT3: narcotoline-4'-O-methyltransferase; CXE1: 3-O-acetylpapaveroxine carboxylesterase; SDR1: Short-chain dehydrogenase/reductase
Fig.4 Biosynthetic pathway of morphine STORR: (S)- to(R)-reticuline epimerase; SalSyn: Salutaridine synthase; SalR: Salutaridine reductase; SalAT: Salutaridinol 7-O-acetyltransferase; THS: Thebaine synthase; T6ODM: Thebaine 6-O-demethylase; COR: Codeinone reductase; CODM: Codeine 6-O-demethylase
产物 功能元件(来源物种) 前体 异源宿主菌 参考文献
(S)-网状
番荔枝碱
PTPS、SepR、PCD、QDHPR、TyrH(褐家鼠),DODC(恶臭假单胞菌),NCS(日本黄连),6OMT、CNMT、 4'OMT、CPR(鸦片罂粟),CYP80B1(加州罂粟) 葡萄糖 酿酒酵母 [25]
四氢小蘖碱 CAS(日本黄连),MT1、BBE(鸦片罂粟),ATR1(拟南芥) (S)-网状番荔枝碱 酿酒酵母 [26]
诺斯卡品 MT1、TNMT、CYP82Y1、CYP82X2、 AT1、CYP82X1、CXE1、SDR1、MT2、MT3(鸦片罂粟),CAS(日本黄连),ATR1(拟南芥) (S)-四氢小蘖碱 酿酒酵母 [20]
诺斯卡品 6OMT、 CNMT、 4'OMT、 CPR、 BBE、MT1、TNMT、 CYP82Y1、CYP82X2、AT1、CYP82X1、CXE1、SDR1、MT2、MT3(鸦片罂粟),DODC(恶臭假单胞菌),NMCH(加州罂粟),CAS(日本黄连),SepR、PTPS、QDHPR、PCD、DHFR、TyrH(褐家鼠) 葡萄糖 酿酒酵母 [9]
(S)-网状
番荔枝碱
MAO(藤黄微球菌),DODC(恶臭假单胞菌),TYR(青枯雷尔氏菌),NCS、6OMT、CNMT、4OMT(日本黄连) 甘油 大肠杆菌 [27]
(S)-网状
番荔枝碱
DODC(恶臭假单胞菌),CYP76AD1(甜菜),NCS、6OMT、CNMT、4OMT、NMCH(鸦片罂粟) 葡萄糖 酿酒酵母 [28]
蒂巴因 SAS、CPR、SAR、SAT(鸦片罂粟) (R)-网状番荔枝碱 酿酒酵母 [29]
吗啡 T6ODM、COR、CODM(鸦片罂粟) 蒂巴因 酿酒酵母 [30]
蒂巴因 PTPS、SepR、PCD、QDHPR、TyrH、DHFR(褐家鼠),DODC(恶臭假单胞菌),NCS(日本黄连),6OMT、CNMT、4'OMT、CPR、SalAT(鸦片罂粟),NMCH(加州罂粟),SalR、DRS-DRR(大红罂粟),CFS-SalSyn:CFS(加州罂粟)、SalSyn(大红罂粟) 葡萄糖 酿酒酵母 [8]
蒂巴因 TYR(青枯雷尔氏菌),DODC(恶臭假单胞菌),MAO(藤黄微球菌),CNMT、4'OMT(日本黄连),SalScut、SalR、 SalAT(鸦片罂粟),ATR2(拟南芥) 葡萄糖甘油 大肠杆菌 [31]
木兰花碱 MAO(藤黄微球菌),NCS、6OMT、CNMT、4'OMT、CYP80G2(日本黄连) 多巴胺 大肠杆菌
酿酒酵母
[34]
血根碱 ATR1(拟南芥),CFS、STS、P6H(加州罂粟),6OMT、OMT、CNMT、BBE、TNMT、MSH(鸦片罂粟) (R,S)-去甲劳丹碱 酿酒酵母 [35]
小蘖碱 CAS(日本黄连)、MT1、BBE(鸦片罂粟),ATR1(拟南芥),STOX(金花小蘖) (S)-网状番荔枝碱 酿酒酵母 [26]
Table 1 Synjournal of benzylisoquinoline alkaloids in microbial hosts
Fig.5 Reconstruction of (S)-reticuline biosynthetic pathway in microbes
[1]   Desgagne-Penix I, Hotchandani T . Heterocyclic amaryllidaceae alkaloids: biosynjournal and pharmacological applications. Current Topics in Medicinal Chemistry, 2017,17(4):418-427.
doi: 10.2174/1568026616666160824104052 pmid: 27558679
[2]   He M M, Qu C R, Gao O D , et al. Biological and pharmacological activities of Amaryllidaceae alkaloids. RSC Advances, 2015,5(21):16562-16574.
doi: 10.3390/molecules24234238 pmid: 31766438
[3]   Li L, Dai H J, Ye M , et al. Lycorine induces cell-cycle arrest in the G0G1 phase in K562 cells via HDAC inhibition. Cancer Cell International, 2012,12(1):49-49.
doi: 10.1186/1475-2867-12-49 pmid: 23176676
[4]   Foreman K E, Jesse J N, Kuo P C , et al. Emetine dihydrochloride: a novel therapy for bladder cancer. Journal of Urology, 2014,191(2):502-509.
doi: 10.1016/j.juro.2013.09.014
[5]   Bessi I, Bazzicalupi C, Richter C , et al. Spectroscopic, molecular modeling, and NMR-spectroscopic investigation of the binding mode of the natural alkaloids berberine and sanguinarine to human telomeric G-Quadruplex DNA. ACS Chemical Biology, 2012,7(6):1109-1119.
doi: 10.1021/cb300096g
[6]   Santoshi S, Naik P K . Molecular insight of isotypes specific β-tubulin interaction of tubulin heterodimer with noscapinoids.Journal of Computer- Aided Molecular Design, 2014,28(7):751-763.
doi: 10.1007/s10822-014-9756-9
[7]   Dittbrenner A, Mock H P, Borner A , et al. Variability of alkaloid content in Papaver somniferum L. Journal of Applied Botany and Food Quality-Angewandte Botanik, 2009,82(2):103-107.
[8]   Galanie S, Thodey K, Trenchard I J , et al. Complete biosynjournal of opioids in yeast. Science, 2015,349(6252):1095-1100.
doi: 10.1126/science.aac9373 pmid: 26272907
[9]   Li Y, Li S, Thodey K , et al. Complete biosynjournal of noscapine and halogenated alkaloids in yeast. Proceedings of the National Academy of Sciences, 2018,115(17):3922-3911.
[10]   Singh A, Massicotte M A, Garand A , et al. Cloning and characterization of norbelladine synthase catalyzing the first committed reaction in Amaryllidaceae alkaloid biosynjournal. BMC Plant Biology, 2018,18(1):338.
doi: 10.1186/s12870-018-1570-4 pmid: 30526483
[11]   Kilgore M B, Augustin M M, Starks C M , et al. Cloning and characterization of a norbelladine 4'-O-methyltransferase involved in the biosynjournal of the Alzheimer’s drug galanthamine in Narcissus sp. aff. pseudonarcissus. PLoS One, 2014,9(7):e103223.
doi: 10.1371/journal.pone.0103223 pmid: 25061748
[12]   Kilgore M B, Augustin M M, May G D , et al. CYP96T1 of Narcissus sp. aff. pseudonarcissus catalyzes formation of the para-para’ C-C phenol couple in the amaryllidaceae alkaloids. Frontiers in Plant Science, 2016,7:225.
doi: 10.3389/fpls.2016.00225 pmid: 26941773
[13]   Kilgore M B, Holland C K, Jez J M , et al. Identification of a noroxomaritidine reductase with amaryllidaceae alkaloid biosynjournal related activities. Journal of Biological Chemistry, 2016,291(32):16740-16752.
doi: 10.1074/jbc.M116.717827 pmid: 27252378
[14]   Nomura T, Quesada A L, Kutchan T M . The new-D-glucosidase in terpenoid-isoquinoline alkaloid biosynjournal in Psychotria ipecacuanha. Journal of Biological Chemistry, 2008,283(50):34650-34659.
doi: 10.1074/jbc.M806953200 pmid: 18927081
[15]   Nomura T, Kutchan T M . Three new O-methyltransferases are sufficient for all O-methylation reactions of ipecac alkaloid biosynjournal in root culture of Psychotria ipecacuanha. Journal of Biological Chemistry, 2010,285(7):7722-7738.
doi: 10.1074/jbc.M109.086157 pmid: 20061395
[16]   Cheong B E, Takemura T, Yoshimatsu K , et al. Molecular cloning of an O-methyltransferase from adventitious roots of Carapichea ipecacuanha. Journal of the Agricultural Chemical Society of Japan, 2011,75(1):107-113.
doi: 10.1271/bbb.100605 pmid: 21228475
[17]   Guo L, Winzer T, Yang X F , et al. The Opium poppy genome and morphinan production. Science, 2018,362(6412):343-347.
doi: 10.1126/science.aat4096 pmid: 30166436
[18]   Winzer T, Gazda V, He Z , et al. A Papaver somniferum 10-gene cluster for synjournal of the anticancer alkaloid noscapine. Science, 2012,336(6089):1704-1708.
doi: 10.1126/science.1220757 pmid: 22653730
[19]   Dang T T, Chen X, Facchini P J . Acetylation serves as a protective group in noscapine biosynjournal in Opium poppy. Nature Chemical Biology, 2015,11(2):104-106.
doi: 10.1038/nchembio.1717 pmid: 25485687
[20]   Li Y, Smolke C D . Engineering biosynjournal of the anticancer alkaloid noscapine in yeast. Nature Communications, 2016,7:12137.
doi: 10.1038/ncomms12137 pmid: 27378283
[21]   Winzer T, Kern M, King A J , et al. Morphinan biosynjournal in Opium poppy requires a P450-oxidoreductase fusion protein. Science, 2015,349(6245):309-312.
doi: 10.1126/science.aab1852 pmid: 26113639
[22]   Farrow S C, Hagel J M ,Beaudoin G A W, et al. Stereochemical inversion of(S)-reticuline by a cytochrome P450 fusion in Opium poppy. Nature Chemical Biology, 2015,11(9):728-732.
doi: 10.1038/nchembio.1879 pmid: 26147354
[23]   Chen X, Hagel J M, Chang L , et al. A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynjournal. Nature Chemical Biology, 2018,14(7):738-743.
doi: 10.1038/s41589-018-0059-7 pmid: 29807982
[24]   刘金凤, 黄鹏, 卿志星 , 等. 苄基异喹啉类生物碱生物合成与代谢工程研究进展. 基因组学与应用生物学, 2016,35(8):2194-2200.
[24]   Liu J F, Huang P, Qing Z X , et al. Advances in the biosynjournal and metabolic engineering research of benzylisoquinoline alkaloids. Genomics and Applied Biology, 2016,35(8):2194-2200.
[25]   Trenchard I J, Siddiqui M S, Thodey K , et al. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metabolic Engineering, 2015,31:74-83.
doi: 10.1016/j.ymben.2015.06.010 pmid: 26166409
[26]   Galanie S, Smolke C D . Optimization of yeast-based production of medicinal protoberberine alkaloids. Microbial Cell Factories, 2015,14(1):144.
doi: 10.1186/s12934-015-0332-3 pmid: 26376732
[27]   Nakagawa A, Minami H, Kim J S , et al. A bacterial platform for fermentative production of plant alkaloids. Nature Communications, 2011,2(2):8.
doi: 10.1038/ncomms1327 pmid: 22179145
[28]   DeLoache W C, Russ Z N, Narcross L , et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015,11(7):465-471.
doi: 10.1038/nchembio.1816 pmid: 25984720
[29]   Fossati E, Narcross L, Ekins A , et al. Synjournal of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One, 2015,10(4):15
doi: 10.1097/PAF.0000000000000508 pmid: 31688050
[30]   Thodey K, Galanie S, Smolke C D . A microbial biomanufacturing platform for natural and semisynthetic opioids. Nature Chemical Biology, 2014,10(10):837-844.
doi: 10.1038/NCHEMBIO.1613
[31]   Nakagawa A, Matsumura E, Koyanagi T , et al. Total biosynjournal of opiates by stepwise fermentation using engineered Escherichia coli. Nature Communications, 2016,7:10390.
doi: 10.1038/ncomms10390 pmid: 26847395
[32]   Brown S, Clastre M, Courdavault V , et al. De novo production of the plant-derived alkaloid strictosidine in yeast. Proceedings of the National Academy of Sciences, 2015,112(11):3205-3210.
[33]   Caputi L, Franke J, Farrow S C , et al. Missing enzymes in the biosynjournal of the anticancer drug vinblastine in Madagascar periwinkle. Science, 2018,360(6394):1235-1238.
doi: 10.1126/science.aat4100 pmid: 29724909
[34]   Minami H, Kim J S, Ikezawa N , et al. Microbial production of plant benzylisoquinoline alkaloids. Proceedings of the National Academy of Sciences, 2008,105(21):7393-7398.
[35]   Trenchard I J, Smolke C D . Engineering strategies for the fermentative production of plant alkaloids in yeast. Metabolic Engineering, 2015,30:96-104.
doi: 10.1016/j.ymben.2015.05.001 pmid: 25981946
[36]   Minami H, Dubouzet E, Iwasa K , et al. Functional analysis of norcoclaurine synthase in Coptis japonica. Journal of Biological Chemistry, 2007,282(9):6274-6282.
doi: 10.1074/jbc.M608933200 pmid: 17204481
[37]   Hawkins K M, Smolke C D . Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chemical Biology, 2008,4(9):564-573.
doi: 10.1038/nchembio.105 pmid: 18690217
[38]   Matsumura E, Nakagawa A, Tomabechi Y , et al. Microbial production of novel sulphated alkaloids for drug discovery. Scientific Reports, 2018,8(1):7980.
doi: 10.1038/s41598-018-26306-7 pmid: 29789647
[39]   Chen W, Yao J, Meng J , et al. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynjournal. Nature Communications, 2019,10:12.
doi: 10.1038/s41467-018-07943-y pmid: 30602727
[40]   Fossati E, Ekins A, Narcross L , et al. Reconstitution of a 10-gene pathway for synjournal of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nature Communications, 2014,5:3283.
doi: 10.1038/ncomms4283 pmid: 24513861
[41]   Lee H, Deloache W C, Dueber J E . Spatial organization of enzymes for metabolic engineering. Metabolic Engineering, 2012,14(3):242-251.
doi: 10.1016/j.ymben.2011.09.003
[42]   Biggs B W, Paepe B D , Santos C N S , et al. Multivariate modular metabolic engineering for pathway and strain optimization .Current Opinion in Biotechnology. 2014,29(1):156-162.
doi: 10.1016/j.tibtech.2018.07.003 pmid: 30064888
[1] LIU Xu-xia,YANG An-ke. An Analysis of the U.S. SECURE Rule and Its Enlightenment to China[J]. China Biotechnology, 2021, 41(9): 126-135.
[2] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[3] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[4] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[5] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[6] SUN Li-ping,XU Wan,LI Meng-wei,ZENG Ru,WENG Jian. Advances of the Physiochemical Properties of Sporopollenin and Its Biomedical Applications[J]. China Biotechnology, 2021, 41(9): 92-100.
[7] LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles[J]. China Biotechnology, 2021, 41(8): 8-16.
[8] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[9] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[10] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[11] CHEN Wen-jie,MIAO Xian-feng. Domestic Research and Development Status of Antibody-drug Conjugates and Strategic Layout of Key Enterprises[J]. China Biotechnology, 2021, 41(6): 105-110.
[12] XU Ye-chun,LIU Hong,LI Jian-feng,SHEN Jing-shan,JIANG Hua-liang. Recent Progress in Drug Development against COVID-19[J]. China Biotechnology, 2021, 41(6): 111-118.
[13] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[14] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[15] ZHU Shuai,JIN Ming-jie,YANG Shu-lin. A Review on Applications of 3D Bioprinting in Cartilage Tissue Regeneration Engineering[J]. China Biotechnology, 2021, 41(5): 65-71.