Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (09): 101-106    DOI:
    
Recombineering Based on Mycobacteriophage and Its Application
FAN Xiang-yu, XIE Jian-ping
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing 400715, China
Download: HTML   PDF(406KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Bacteriophage is a powerful tool to address fundamental genetics issues. This is true for Mycobacteriophages too, a well-documented resource for Mycobacterium tuberculosis genetics. Recent developments of mycobacterial recombineering system, which is based on mycobacteriophage Che9c-encoded proteins, are reviewed and its application in basic M. tuberculosis biology is outlined. The advantage of this system is that it is independent of bacterial recA system, restriction endonuclease and DNA ligase, and complex in vitro manipulation. The expression of Che9c-encoded exonuclease and recombinase could substantially complete the construction of gene knockouts or knock-ins, point mutants and mycobacteriophage mutants. The mycobacterial recombineering system is a facile new tool to study gene function and for mutation analysis.

Key wordsRecombinase      Homologous recombination      Recombineering      Mycobacterium     
Received: 06 December 2011      Published: 25 September 2012
ZTFLH:  Q93  
Cite this article:

FAN Xiang-yu, XIE Jian-ping. Recombineering Based on Mycobacteriophage and Its Application. China Biotechnology, 2012, 32(09): 101-106.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I09/101

[1] Court D L, Sawitzke J A, Thomason L C.Genetic engineering using homologous recombination. Annu Rev Genet, 2002,36:361-388.
[2] Copeland N G, Jenkins N A, Court D L. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet, 2001,2(10): 769-779.
[3] Sarov M, Schneider S, Pozniakovski A, et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat Methods, 2006,3(10): 839-844.
[4] Yu D, Ellis H, Lee E. An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(11): 5978.
[5] Ellis H, Yu D, DiTizio T. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(12): 6742.
[6] 张雪, 温廷益. Red重组系统用于大肠杆菌基因修饰研究进展. 中国生物工程杂志, 2008, 28(12): 89-93. Zhang X, Wen T Y. Advances of red recombination system in Escherichia coli gene modification. China Biotechnology, 2008, 28(12): 89-93.
[7] Datta S, Costantino N, Zhou X. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proceedings of the National Academy of Sciences, 2008,105(5): 1626.
[8] Bouchard J, Moineau S. Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology, 2000,270(1): 65-75.
[9] Bae T, Baba T, Hiramatsu K, et al. Prophages of Staphylococcus aureus Newman and their contribution to virulence. Molecular Microbiology, 2006,62(4): 1035-1047.
[10] Loessner M, Inman R, Lauer P, et al. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Molecular Microbiology, 2000,35(2): 324-340.
[11] Lüneberg E, Mayer B, Daryab N, et al Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila. Molecular Microbiology, 2001,39(5): 1259-1271.
[12] Van Kessel J, Hatfull G. Recombineering in Mycobacterium tuberculosis. Nature Methods, 2006,4(2): 147-152.
[13] Murphy K C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol, 1998,180(8): 2063-2071.
[14] Muyrers J P, Zhang Y, Buchholz F, et al. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev, 2000,14(15): 1971-1982.
[15] Iyer L M, Koonin E V, Aravind L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics, 2002,3(1): 8.
[16] Zhang Y, Buchholz F, Muyrers J P, et al. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet, 1998,20(2): 123-128.
[17] Jacobs W, Tuckman M, Bloom B. Introduction of foreign DNA into mycobacteria using a shuttle phasmid, 1987,327(6122):532-535.
[18] Hatfull G. Mycobacteriophages: Genes and genomes. Annual Review of Microbiology, 2010,64:331-356.
[19] Pedulla M, Ford M, Houtz J, et al. Origins of highly mosaic mycobacteriophage genomes. Cell, 2003,113(2): 171-182.
[20] Hatfull G, Pedulla M, Jacobs-Sera D, et al. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet, 2006,2(6): e92.
[21] Van Kessel J, Marinelli L, Hatfull G. Recombineering mycobacteria and their phages. Nature Reviews Microbiology, 2008,6(11): 851-857.
[22] Hill F, Benes V, Thomasova D, et al. BAC Trimming: Minimizing Clone Overlaps. Genomics, 2000,64(1): 111-113.
[23] Gay P, Le Coq D, Steinmetz M, et. Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. Journal of Bacteriology, 1983,153(3): 1424.
[24] Oppenheim A, Rattray A, Bubunenko M, et al. In vivo recombineering of bacteriophage by PCR fragments and single-strand oligonucleotides. Virology, 2004,319(2): 185-189.
[25] Lee E. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 2001,73(1): 56-65.
[1] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[2] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[3] FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification[J]. China Biotechnology, 2020, 40(6): 84-92.
[4] SHENG Xiao-jing,QI Xiao-xue,XU Lei,QI Zhi-qing,DIAO Yong. The Research Progress of Gene Cloning and Assembly[J]. China Biotechnology, 2020, 40(1-2): 133-139.
[5] WANG Gang,XIAO Yu,LI Yi,LIU Zhi-gang,PEI Cheng-li,WU Li-da,LI Yan-li,WANG Xi-qing,ZHANG Ming-lei,CHEN Guang,TONG Yi. Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid[J]. China Biotechnology, 2019, 39(8): 66-73.
[6] QIN Meng-fei, SUN Hong, SONG Hao. Studies on the 3-Ketosteriod-1-Dehydrogenation of Steroid Hormone by Cellular lysates of Mycobacterium[J]. China Biotechnology, 2017, 37(8): 23-30.
[7] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[8] CHEN Jian-wu, REN Hong-yan, HUA Wen-jun, LIU Xi-mei, QI Shi-jin, ZHOU Li, OU Yang-yan, BI Yan-zhen, YANG Ye, ZHENG Xin-min. A Double Fluorescence Screening Strategy to Enhance the Efficiency of Gene Targeting[J]. China Biotechnology, 2017, 37(1): 58-63.
[9] GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome[J]. China Biotechnology, 2014, 34(06): 68-74.
[10] XIE Ke, RAO Li-qun, LI Hong-wei, AN Xue-li, FANG Cai-chen, WAN Xiang-yuan. Research Progress of Genome Editing in Plants[J]. China Biotechnology, 2013, 33(6): 99-104.
[11] YE Xiang-li, LI Da-li. Rapid Construction of GPR126 Conditional Gene-targeting Vector[J]. China Biotechnology, 2013, 33(4): 106-113.
[12] JIANG Li, YE Xiang-li, LI Da-li. Construction of Mouse Gene-targeting Vector Through Modified Recombineering Strategy[J]. China Biotechnology, 2011, 31(10): 88-94.
[13] LV Bei, CHENG Hai-rong, YAN Qing-feng, HUANG Zhen-ju, LI Yi-nv, LUO Da, SHEN Gui-fang, ZHANG Zhi-fang, DENG Zi-xin, LIN Min, CHENG Qi. The Development and Recent Improvements of in Vitro Nucleic Acid Amplification Technology[J]. China Biotechnology, 2011, 31(03): 91-96.
[14] . Studies on Gene Knocking Out of 3-Ketosteriod-1-Dehydrogenase in Mycobacterium neoaurum[J]. China Biotechnology, 2007, 27(5): 39-44.
[15] . Construction of α-hemolysin deletion mutation of SEB-producing Staphylococcus aureus[J]. China Biotechnology, 2007, 27(10): 48-52.