Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (06): 68-74    DOI: 10.13523/j.cb.20140610
    
Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome
GE Gao-shun1, ZHANG Li-chao1, ZHAO Xin2, HU Xue-jun1, LI Ya-jie1
1. Medical College, Dalian University, Dalian 116622, China;
2. Liaoning Entry-Exit Inspection and Quarantine Bureau, Dalian 116001, China
Download: HTML   PDF(788KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The purpose was to improve the efficiency of scarless gene knockout in E. coli genome by the optimized method. Methods: The efficacy of scarless gene knockout in E.coli genome by two steps Red homologous recombinantion system and endonuclease I-SceI screening was investigated via optimization of the homologous DNA length with target sequence and the inducer concentration for production of I-SceI for the selection of positive clones. The scarless knockout of nanKETA clusters in the strain CLM37 was taken as a model. The new strain growth behaviour with the scarless knockout of nanKETA was investigated via the comparing the growth curves of wildtype E. coli CLM37. Results: The nanKETA clusters were knockouted scarless successfully in E. coli CLM37 genome, and the efficacy of scarless processing was increased up to 90% via extending the length of the homologous DNA with the genome, from the 80 base pairs normally used up to 684 base pairs, and increasing the concentration of the inducer tetracycline for producing I-SceI, from 500 μg/ml upto 1000 μg/ml. It is shown that the knockout of nanKETA clusters in E. coli CLM37 did not impact the growth. Conclusion: The efficacy of gene scarless knockout in E.coli can be significantly improved via extending the length of the homology DNA and increasing the concentration of inducer tetracycline.



Key wordsEscherichia coli      Genome      Scarless gene knockout      Red homologous recombination system      I-SceI     
Received: 05 March 2014      Published: 25 June 2014
ZTFLH:  Q78  
Cite this article:

GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome. China Biotechnology, 2014, 34(06): 68-74.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140610     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I06/68


[1] Murphy K C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol, 1998, 180(8): 2063-2071.

[2] Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A, 2000, 97(12): 6640-6645.

[3] Tischer B K, von Einem J, Kaufer B, et al. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques, 2006, 40(2): 191-197.

[4] Kolisnychenko V, Plunkett G, Herring C D, et al. Engineering a reduced Escherichia coli genome. Genome Res, 2002, 12(4): 640-647.

[5] Hashimoto M, Ichimura T, Mizoguchi H, et al. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol, 2005, 55(1): 137-149.

[6] Yu B J, Sung B H, Koob M D, et al. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol, 2002, 20(10): 1018-1023.

[7] Pósfai G, Kolisnychenko V, Bereczki Z, et al. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res, 1999, 27(22): 4409-4415.

[8] Blank K, Hensel M, Gerlach R G. Rapid and highly efficient method for scarless mutagenesis within the Salmonella enterica chromosome. PLoS One, 2011, 6(1): e15763.

[9] Serra-Moreno R, Acosta S, Hernalsteens J P, et al. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol, 2006, 7:31.

[10] Gerlach R G, Jckel D, Hlzer S U, et al. Rapid oligonucleotide-based recombineering of the chromosome of Salmonella enterica. Appl Environ Microbiol, 2009, 75(6): 1575-1580.

[11] Fierfort N, Samain E. Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides. J Biotechnol, 2008, 134(3-4): 261-265.

[12] Drouillard S, Mine T, Kajiwara H, et al. Efficient synthesis of 6'-sialyllactose, 6,6'-disialyllactose, and 6'-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224. Carbohydr Res, 2010, 345(10): 1394-1399.

[13] Chen X, Varki A. Advances in the biology and chemistry of sialic acids. ACS Chem Biol, 2010, 5(2): 163-176.

[14] Kawai N, Ikematsu H, Iwaki N, et al. Comparison of the effectiveness of zanamivir and oseltamivir against influenza A/H1N1, A/H3N2, and B. Clin Infect Dis, 2009, 48(7): 996-997.

[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[3] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[4] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[5] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[6] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[7] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[8] CHENG Zi-zhao,CHEN Chu-chu,YING Lei,LI Xiao-kun,HUANG Zhi-feng. Comparison of Genomic and Infection Characteristics of Coronavirus[J]. China Biotechnology, 2020, 40(11): 56-66.
[9] Jun CHEN,Hua-jun ZHENG,Ya-ming LIU,Guo-ping ZHAO,Song QIN. The Analysis of the Low Coverage Haematococcus Pluvialis Draft Genome[J]. China Biotechnology, 2018, 38(7): 21-28.
[10] Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases[J]. China Biotechnology, 2018, 38(2): 30-37.
[11] SONG Jia-wen, TIAN Su, ZHANG Yu-ru, WANG Zhi-zhen, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. Genome Shuffling Enhances Transglutaminase Production of Streptomyces mobaraensis[J]. China Biotechnology, 2017, 37(9): 105-111.
[12] XU Yuan-yuan, YU Han-bing, WU Fei-hua, WU Xiao-mei. Molecular Mechanisms of Antimicrobial Defenses and Resistance in Forest Trees in a Genomic Era[J]. China Biotechnology, 2017, 37(6): 114-123.
[13] MING Jin-yu, LI Hua-dan, LIANG Shi-bo, HE Li, YU Qin-han, LI Ji-lin, ZHANG Yan-ming. Research Progress in the Development of Plant Functional Target Gene Markers[J]. China Biotechnology, 2017, 37(3): 83-91.
[14] LIANG Shi-bo, LIU Jia-ying, LIU Jie, YANG Jiang-tao, LI Ji-lin, ZHANG Yan-ming. Next-generation Sequencing Applications for Crop Genomes[J]. China Biotechnology, 2017, 37(2): 111-120.
[15] REN Shuang, ZHU Hong-liang. Establishment of Taqman Quantitative PCR System to Estimate Copy Numbers of Exogenous Transgene in Genome Edited Tomato[J]. China Biotechnology, 2017, 37(10): 72-80.