Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (09): 107-112    DOI:
    
Iron Uptake by Anabaena sp. Strain PCC7120
DONG Yan-ling, PAN Xue-wu
Department of Biotechnology, Wuhan Bioengineering Institute, Wuhan 430415, China
Download: HTML   PDF(525KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  As a cofactor in photosynthesis, respiration and nitrogen fixation, Iron is essential for cyanobacteria, and iron deficiency would affect the productivity. Iron is present in oxic ecosystems as insoluble iron (III) oxide minerals and thus is not readily available for living organisms to acquire and use. Under iron-limiting conditions, siderophores are exported from the Anabaena cell, where they chelate ferric ions in the environment. Specific ferric-siderophore complexes are recognized by cognate outer-membrane transporters, which initiate the process of iron transport into the cell where the iron becomes available for metabolic functions. Recent progress of siderophores including the types and their biosynthetic pathway was summarized. The components of the putative iron transport system was analyzed. The regulation mechanism of iron uptake was also discussed. This review would provide new evidence for advanced research on iron uptake by Anabaena.

Key wordsAnabaena      Iron      Iron transport      Siderophores     
Received: 24 February 2012      Published: 25 September 2012
ZTFLH:  Q78  
Cite this article:

DONG Yan-ling, PAN Xue-wu. Iron Uptake by Anabaena sp. Strain PCC7120. China Biotechnology, 2012, 32(09): 107-112.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I09/107

[1] 席超, 王春梅, 施定基. 蓝藻基因工程应用研究进展. 中国生物工程杂志, 2010, 30(3): 105-111. Xi C, Wang C M, Shi D J. Advances on cyanobacteria genetic engineering application. China Biotechnology, 2010, 30(3): 105-111.
[2] 陈伟东, 王春梅, 施定基.鱼腥藻 7120遗传转化的研究进展.微生物学通报, 2010, 37(3): 419-425. Chen W D, Wang C M, Shi D J. Advances on the genetic transformation of Anabaena sp. strain PCC7120. Microbiology China, 2010, 37(3): 419-425.
[3] 康瑞娟, 施定基, 丛 威, 等. 鱼腥藻7120中异形胞发育的影响因子. 过程工程学报.2005,5(2):209-212. Kang R J, Shi D J, Cong W, et al. Factors influencing the heterocyst differentiation in Anabaena sp. PCC7120.The Chinese Journal of Process Engineering, 2005,5(2):209-212.
[4] Keren N, Aurora R, Pakrasi H B. Critical roles of bacterioferrritins and iron storage and proliferation in cyanobacteria. Plant Physiol, 2004, 135: 1666-1673.
[5] Alexova R, Fujii M, Birch D, et al. Iron uptake and toxin synthesis in the bloom-forming Microcystis aeruginosa under iron limitationemi. Environ Microbiol, 2011, 13(4): 1064-1077.
[6] Cheng Y, Li J H, Shi L, et al. A pair of iron-responsive genes encoding protein kinases with a Ser/Thr kinase domain and a His kinase domain are regulated by NtcA in the cyanobacterium Anabaena sp. strain PCC7120. J Bacteriol, 2006, 188:4822-4829.
[7] Narayan, Prakash O, Kumari N, et al. Iron starvation-induced proteomic changes in Anabaena (Nostoc) sp. PCC7120: exploring survival strategy. J Microbiol Biotechnol, 2011, 21(2):136–146.
[8] Shcolnick S, Keren N. Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol, 2006, 141:805-810.
[9] Ting C S, Roca PG, King J, et al. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol, 2002, 10:134-142.
[10] Mirus O, Strauss S, Nicolaisen K, et al. TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol, 2009, 7: 68.
[11] Ferreira F, Straus N A. Iron deprivation in cyanobacteria. J Appl Phyc, 1994, 6:199-210.
[12] Schaible U E, Kaufmann S H. Iron and microbial infection. Nat Rev Microbiol, 2004, 2: 946-953.
[13] 王伟, 肖明. 微生物嗜铁素介导的铁摄取. 生物学杂志,2005, 22(4): 11-15. Wang W, Xiao M. Siderophore-mediated iron uptake of microorganisms. Journal of Biology, 2005, 22(4): 11-15.
[14] Braun V, Hantke K. Recent insights into iron import by bacteria. Curr Opin Chem Biol, 2011, 15: 328-334.
[15] Hopkinson B M, Morel F. The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Biometals, 2009, 22: 659-669.
[16] Clarke S E, Janice S, Sanders-Loehr J. Induction of siderophore activity in Anabaena spp. and its moderation of copper toxicity. Appl Env Microbiol, 1987, 53: 917-922.
[17] Nicolaisen K, Moslavac S, Samborski A, et al. Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp.strain PCC 7120. J Bacteriol, 2008, 190: 7500-7507.
[18] Jeanjean R, Talla E, Latifi A, et al. A large gene cluster encoding peptide synthetases and polyketide synthases is involved in production of siderophores and oxidative stress response in the cyanobacterium Anabaena sp. strain PCC 7120. Environ Microbiol, 2008, 10: 2574-2585.
[19] Najimi M, Lemos M L, Osorio C R. Identification of siderophore biosynthesis genes essential for growth of Aeromonas salmonicida under iron limitation conditions. Appl Environ Microbiol, 2008, 74(8): 2341-2348.
[20] Lynch D, O’Brien J, Welch T, et al. Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021a siderophore produced by Sinorhizobium meliloti. J Bacteril, 2001, 183: 2576-2585.
[21] Stevanovic M, Alexander Hahn A, Nicolaisen K, et al. The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol, 2011, 14(7):1655-1670.
[22] Braun V, Hantke K. Recent insights into iron import by bacteria. Curr Opin Chem Bio, 2011, 15(2): 328-334.
[23] Krewulak K D, Vogel H J. TonB or not TonB: is that the question? Biochem Cell Biol, 2011, 89: 87-97.
[24] Nicolaisen K, Schleiff E. Iron dependency of and transport by cyanobacteria. In Iron Uptake in Microorganisms. Norfolk, UK: Caister Academic Press, 2010, 203-229.
[25] Oliver M, Sascha S, Kerstin N, et al. TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biology, 2009, 7:68-93.
[26] Nicholas N, Maude G, Travis J B, et al. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol, 2010, 64: 43-60.
[27] Nicolaisen K, Hahn A, Valdebenito M, et al. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC7120. Biochim Biophys Acta, 2010, 1798: 2131-2140.
[28] 董妍玲,徐旭东. 鱼腥藻PCC7120外膜的纯化和外膜蛋白的鉴定. 水生生物学报, 2009, 33(5): 247-250. Dong Y L, Xu X D. Purification of the outer membrane and identification of outer membrane proteins from Anabaena sp. PCC7120. Acta Hydrobiologica Sinica, 2009, 33(5): 247-250.
[29] Dong Y L, Xu X D. Outer membrane proteins induced by iron deficiency in Anabaena sp.PCC 7120. Progress in Natural Science, 2009 (19):1477-1483.
[30] Jin-Won L,John D H. Functional specialization within the Fur family of metalloregulators. Biometals, 2007, 20:485-499.
[31] González A, Bes M T, Peleato M L, et al. Unravelling the regulatory function of FurA in Anabaena sp.PCC 7120 through 2-D DIGE proteomic analysis. J Proteo, 2011, 74: 660-671.
[32] Hernandez J A, Lopez-Gomollon S, Bes M T, et al. Three fur homologues from Anabaena sp. PCC7120: exploring reciprocal protein-promoter recognition. FEMS Microbiol Lett, 2004, 236: 275-282.
[33] González A, Bes M T, Barja F, et al. Overexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology. Plant Cell Physiol, 2010, 51(11): 1900–1914.
[34] López-Gomollón S, Hernández J A, Angarica S P, et al. Cross-talk between iron and nitrogen regulatory networks in Anabaena (Nostoc) sp. PCC 7120: identification of overlapping genes in FurA and NtcA regulons. J Mol Biol, 2007, 374: 267–281.
[35] 刘梦滢,王莉,陈雯莉. 鱼腥蓝细菌PCC7120中一个受到NtcA调控的基因alr1390. 微生物学报, 2010, 50(1): 36-40. Liu M Y, Wang L, Chen W L. A putative NtcA-regulating gene, alr1390, in Anabaena sp.PCC7120.Acta Microbiologica Sinica, 2010, 50(1): 36-40.
[36] 何冬丽, 徐旭东. 异形胞分化相关基因在点形念珠藻厚壁孢子中的转录表达.水生生物学报, 2011,35(3):528-531. He D L, Xu X D.Transcription of heterocyst differentiation-related genes in akinetes in Nostoc punctiforme. Acta Hydrobiologica Sinica, 2011,35(3):528-531.
[37] 陈思礼, 王建林, 张娟, 等. 鱼腥藻PCC7120基因all5292和alr0647 的初步研究, 武汉植物学研究2008,26(6): 581-588. Chen S L, Wang J L, Zhang J, et al. The elementary research of genes all5292 and alr 0647 in regulated expression from Anabaena sp. PCC7120. Journal of Wuhan Botanical Research, 2008,26(6): 581-588.
[1] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[2] ZHANG Hu,LIU Zhen-zhou,CHEN Jia-min,GAO Bao-yan,ZHANG Cheng-wu. Research Progress on the Production of Bioactive Compounds from Marine Diatoms[J]. China Biotechnology, 2021, 41(4): 81-90.
[3] MENG Xiao-lin,PANG Xi-ming,WANG Jie. Agrobacterium-mediated Transformation and the Functions of Pks in Marine-derived Penicillium oxalicum[J]. China Biotechnology, 2020, 40(9): 11-17.
[4] BAI Jing-yu,LIN Xiao-feng,YIN Zheng-qing. Analysis of the Current Situation and Development Trend of Global Biotechnology Research Based on Bibliometrics[J]. China Biotechnology, 2020, 40(7): 100-109.
[5] KONG Jian-tao,ZHUANG Ying-ping,GUO Mei-jin. Enhancement of Anti-CD20 Monoclonal Antibody Expression by CHO based on DOE and Amino Acid Supplemental Strategy[J]. China Biotechnology, 2020, 40(12): 41-48.
[6] XIAO Xue-jun,TANG Qi,XINHUA Nabi. CAR-T Therapy Targeting Tumor Microenvironment[J]. China Biotechnology, 2020, 40(12): 67-74.
[7] FANG Yuan,ZHANG Tong-wei,CAO Chang-qian,TIAN Jie-sheng,LIN Wei. Diversity and Applications of Magnetotactic Bacteria[J]. China Biotechnology, 2019, 39(12): 73-82.
[8] XU Zhu, ZHUGE Qi-chuan, HUANG Li-jie. Advances in Stem Cell 3D Scaffolds[J]. China Biotechnology, 2017, 37(9): 112-117.
[9] SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. Phytoferritin and the Response to Oxidative Stress[J]. China Biotechnology, 2017, 37(2): 121-126.
[10] Li-li JIANG,Jun-song ZHENG,Yan LI,Jun DENG,Li-chao FANG,Hui HUANG. Construction of Blood-brain Barrier in vitro Model Based on Microfluidic Chip[J]. China Biotechnology, 2017, 37(12): 1-7.
[11] TIAN Bao-yu, MA Rong-qin. Antibiotic Resistances in Environmental Microbiota and Antibiotic Resistome[J]. China Biotechnology, 2015, 35(10): 108-114.
[12] ZHANG Zhi-qiang, HUANG Xiang-hua, ZHAO Lin-yuan. The Effects of Microenvironment on Cells and The Application of Bionics in Tissue Engineering Scaffolds[J]. China Biotechnology, 2014, 34(4): 101-109.
[13] ZHAO Jian-feng, XIN Xing, WEI Pei-pei, QIAN Ai-rong, Akateh Tazifua Alfred, SHANG Peng, YANG Shu-lin. Effects of High Magneto-Gravitational Environment on Pseudomonas aeruginosa N1207[J]. China Biotechnology, 2013, 33(2): 27-33.
[14] ZHANG Yu-jiao, TANG Qian, CAO Hong-yu, ZHENG Xue-fang. Studies on the Properties of Biomacromolecules under Molecular Crowded Conditions[J]. China Biotechnology, 2012, 32(12): 104-109.
[15] GAO Guang-jun, KE Yue-hua, XU Jie, WANG Li-ping, ZHANG Zhen-fang, LI Zhuo-ling, GUO Ying-fei, WANG Lu-lu, WANG Yu-fei, XU Xing-ran, CHEN Ze-liang. Construction of B.ovis virB Mutant and Analysis the Intracellular Environmental Adaptations[J]. China Biotechnology, 2012, 32(11): 86-91.