Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (7): 100-109    DOI: 10.13523/j.cb.2003072
    
Analysis of the Current Situation and Development Trend of Global Biotechnology Research Based on Bibliometrics
BAI Jing-yu1,LIN Xiao-feng1,YIN Zheng-qing2,*()
1 Innovation Driven Development Center, National Development and Reform Commission, Beijing 100037,China
2 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083,China
Download: HTML   PDF(1889KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bibliometric analysis method is employed to analyze the current situation and development trend of global biotechnology research and its implications for the development of biotechnology research in China. The research results show that China has ranked first in the world in terms of the number of biotechnology article published in 2019, however, it still lags behind the developed biotech countries in Europe and the United States in terms of the quality of biotechnology articles, academic influence and international cooperation capacity. Then it analyzes the subject composition of global biotechnology research, and the cross-situation of each biotechnology research branch field. Finally, it analyzes the latest research keywords in each biotechnology subdivision field. Aiming at the current problems in the development of biotechnology research in China, related suggestions are put forward such as focusing on the quality of research results, promoting cross-disciplinary integration, strengthening international cooperation and exchanges, and conforming to future trends in scientific and technological development.



Key wordsBiomedicine      Bio-based chemicals      Bio-agriculture      Bioenergy      Biological environmental protection      Bibliometric analysis     
Received: 30 March 2020      Published: 13 August 2020
ZTFLH:  Q-1  
Corresponding Authors: Zheng-qing YIN     E-mail: yzq_cau@163.com
Cite this article:

BAI Jing-yu,LIN Xiao-feng,YIN Zheng-qing. Analysis of the Current Situation and Development Trend of Global Biotechnology Research Based on Bibliometrics. China Biotechnology, 2020, 40(7): 100-109.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2003072     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I7/100

Fig.1 Number of global biotechnology articles during 2010-2019
Fig.2 Temporal and spatial features of global biotechnology article publication during 2010-2019
Fig.3 The research field distribution of global biotechnology articles during 2010-2019
外国机构 文献数量(篇) 被引率(次/篇) 中国机构 文献数量(篇) 被引率(次/篇)
法国国家科研中心 4 888 18.71 中国科学院 6 938 19.77
美国加州大学 4 003 32.32 中国科学院大学 2 109 16.50
美国能源部 2 826 33.13 浙江大学 1 323 18.44
德国亥姆霍兹联合会 2 175 27.15 清华大学 1 071 21.84
印度科学与工业研究理事会 2 006 15.60 上海交通大学 916 17.90
西班牙高等科学研究理事会 1 968 21.80 北京大学 873 23.10
意大利国家研究委员会 1 861 16.42 华南理工大学 830 19.87
印度理工学院 1 802 13.97 中国农业科学院 684 12.30
巴西圣保罗大学 1 590 12.92 复旦大学 667 20.83
美国农业部 1 575 20.69 四川大学 667 14.34
Table 1 The top 10 domestic and foreign biotechnology research institutions in article amount
Fig.4 The number of highly cited articles on biotechnology in various countries and regions and their average publication time during 2010-2019
Fig.5 Keyword clustering map of global highly cited biotechnology articles during 2010-2019
聚类号 主题 关键词数(个) 主要关键词
#1 医药/健康 258 纳米粒子、癌症、体外、药物递送、蛋白质、细胞、基因
(nanoparticles, cancer, in vitro, drug-delivery, protein, cells, gene)
#2 能源/燃料 137 生物质、能源、热解、燃料、燃烧、木质素、生物油
(biomass, energy, pyrolysis, fuels, combustion, lignin, bio-oil)
#3 环境/生态 73 黒碳、生物炭、颗粒物、氮、气候变化
(black carbon, biochar, particulate matter, nitrogen, climate change)
#4 材料/化学品 49 吸附、活性炭、石墨烯、纳米管、多孔碳
(adsorption, activated carbon, graphene, nanotubes, porous carbon)
Table 2 Cluster theme and its keywords
Fig.6 Time clustering map of global biotechnology research articles during 2010-2019
关键词 中文释义 聚类号 平均发文年份 关键词 中文释义 聚类号 平均发文年份
molecular docking 分子对接 #1 2018.7 nanosheets 纳米片 #4 2017.1
plasticity 可塑性 #1 2018.5 thermogravimetric analysis 热重分析 #2 2017.0
bioactivity 生物活性 #1 2018.4 supercapacitor 超级电容 #2 2016.9
lignin valorization 木质素资源化利用 #2 2018.1 porous carbon 多孔碳 #4 2016.9
machine learning 机器学习 #1 2018.0 water treatment 水处理 #3 2016.8
carbon dots 碳量子点 #4 2017.2 green synthesis 绿色合成 #3 2016.5
Table 3 Keywords of the latest highly cited biotechnology articles
[1]   周肇光. 中国经济未来发展趋势:基于生物经济研究文献的分析. 管理学刊, 2015,28(5):1-6.
doi: 10.1177/014920630202800101
[1]   Zhou Z G. Future development trend of Chinese economy:analysis based on bio-economic research literature. Journal of Management, 2015,28(5):1-6.
doi: 10.1177/014920630202800101
[2]   OECD. Biobased chemicals and bioplastics: finding the right policy balance.[ 2020-03-21]. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/STP/BIO(2020)17/FINAL&docLanguage=En.
[3]   Lee D H. Bio-based economies in Asia: Economic analysis of development of bio-based industry in China, India, Japan, Korea, Malaysia and Taiwan. International Journal of Hydrogen Energy, 2016,41(7):4333-4346.
doi: 10.1016/j.ijhydene.2015.10.048
[4]   陈方, 丁陈君, 陈云伟, 等. 中国工业生物技术发展态势分析与展望. 中国生物工程杂志, 2016,36(5):1-11.
doi: 10.13523/j.cb.20160501
[4]   Chen F, Ding C J, Chen Y W, et al. A study on the trend and prospective of industrial biotechnology in China. China Biotechnology, 2016,36(5):1-11.
doi: 10.13523/j.cb.20160501
[5]   中华人民共和国国务院. “十三五”国家科技创新规划. [2020-03-21]. http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm.
[5]   State Council of the People’ Republic of China. National science and technology innovation plan of “the 13th Five-year Plan”. [2020-03-21]. http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm. .
[6]   国家发展改革委. “十三五”生物产业发展规划. [2020-03-21]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201706/W020191104624250601539.pdf.
[6]   National Development and Reform Commission. Biological industry development plan of “the 13th Five-year Plan”. [2020-03-21]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201706/W020191104624250601539.pdf. .
[7]   陈方, 丁陈君, 陈云伟, 等. 工业生物技术领域国际发展态势及我国发展前景展望. 世界科技研究与发展, 2018,40(2):133-148.
[7]   Chen F, Ding C J, Chen Y W, et al. A study on global trends of industrial biotechnology and the perspectives in China. World Sci-Tech R & D, 2018,40(2):133-148.
[8]   陈方, 陈云伟, 丁陈君, 等. “一带一路”沿线国家生物技术发展趋势研究. 中国生物工程杂志, 2018,38(1):1-14.
[8]   Chen F, Chen Y W, Ding C J, et al. A study on the trends of biotechnology development in countries along the Belt and Road. China Biotechnology, 2018,38(1):1-14.
[9]   廖胜姣. 科学知识图谱绘制工具VOSviewer与Citespace的比较研究. 科技情报开发与经济, 2011,21(7):137-139.
[9]   Liao S J. The comparative study on the scientific knowledge mapping tools: VOSviewer and Citespace. Journal of Library and Information Science, 2011,21(7):137-139.
[10]   王海焦, 黄锐娜, 王小俊, 等. 基于VOSviewer的富血小板血浆研究热点主题分析. 中国组织工程研究, 2019,23(18):2947-2952.
[10]   Wang H J, Huang R N, Wang X J, et al. Analysis on the hotspot of the platelet-rich plasma based on VOSviewer. Chinese Journal of Tissue Engineering Research, 2019,23(18):2947-2952.
[11]   康迎英, 张福利, 蔡润津, 等. 基于VOSviewer国外医药卫生领域计算机辅助教学研究计量学分析. 中国医药导刊, 2019,21(3):181-187.
[11]   Kang Y Y, Zhang F L, Cai R J, et al. Bibliometric analysis based on VOSviewer on computer assisted instruction in global medical and health field. Chinese Journal of Medicinal Guide, 2019,21(3):181-187.
[12]   Hall P J, Mirzaeian M, Fletcher S I, et al. Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy & Environmental Science, 2010,3(9):1238-1251.
[13]   徐建中, 王名扬. 文献影响力的综合评价指标体系研究. 情报理论与实践, 2014,37(5):69-72,56.
[13]   Xu J Z, Wang M Y. Research on the comprehensive evaluation index system of literature influence. Information Studies: Theory & Application, 2014,37(5):69-72,56.
[14]   Tan S Y, Yang B, Liu J, et al. Penicillixanthone A, a marine-derived dual-coreceptor antagonist as anti-HIV-1 agent. Natural Product Research, 2019,33(10):1467-1471.
doi: 10.1080/14786419.2017.1416376 pmid: 29258357
[15]   Ismail F Y, Fatemi A, Johnston M V. Cerebral plasticity: Windows of opportunity in the developing brain. European Journal of Paediatric Neurology, 2017,21(1):23-48.
doi: 10.1016/j.ejpn.2016.07.007 pmid: 27567276
[16]   Ishay-Ronen D, Diepenbruck M, Kalathur R K, et al. Gain fat-lose metastasis: Converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell, 2019,35(1):17-32.
pmid: 30645973
[17]   Chaffer C L, Juan B P, Lim E, et al. EMT, cell plasticity and metastasis. Cancer and Metastasis Reviews, 2016,35(4):645-654.
doi: 10.1007/s10555-016-9648-7 pmid: 27878502
[18]   DuPage M, Bluestone J A. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nature Reviews Immunology, 2016,16(3):149-163.
pmid: 26875830
[19]   Ritschka B, Storer M, Mas A, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes & Development, 2017,31(2):172-183.
pmid: 28143833
[20]   Nothias L F, Nothias-Esposito M, da Silva R, et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. Journal of Natural Products, 2018,81(4):758-767.
pmid: 29498278
[21]   Diller G P, Kempny A, Babu-Narayan S V, et al. Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10019 patients. European Heart Journal, 2019,40(13):1069-1077.
doi: 10.1093/eurheartj/ehy915 pmid: 30689812
[22]   Chen H M, Engkvist O, Wang Y H, et al. The rise of deep learning in drug discovery. Drug Discovery Today, 2018,23(6):1241-1250.
doi: 10.1016/j.drudis.2018.01.039 pmid: 29366762
[23]   Zhang L, Tan J J, Han D, et al. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discovery Today, 2017,22(11):1680-1685.
doi: 10.1016/j.drudis.2017.08.010 pmid: 28881183
[24]   Rinaldi R, Jastrzebski R, Clough M T, et al. Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie-internationa Edition, 2016,55(29):8164-8215.
[25]   Jin Q M, Wang X B, Li S S, et al. Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study. Journal of the Energy Institute, 2019,92(1):107-117.
[26]   Majdecka D, Bilewicz R. Nanostructuring carbon supports for optimal electrode performance in biofuel cells and hybrid fuel cells. Journal of Solid State Electrochemistry, 2016,20(4):949-955.
doi: 10.1007/s10008-015-2969-6
[27]   Chen B, Tian X F, Yu L, et al. Removal of pigments from molasses wastewater by combining micro-electrolysis with biological treatment method. Bioprocess and Biosystems Engineering, 2016,39(12):1867-1875.
doi: 10.1007/s00449-016-1661-2 pmid: 27503488
[28]   Andjelkovic I, Azari S, Erkelens M, et al. Bacterial iron-oxide nanowires from biofilm waste as a new adsorbent for the removal of arsenic from water. RSC Advances, 2017,7(7):3941-3948.
doi: 10.1039/C6RA26379H
[29]   Das R K, Brar S K, Verma M, et al. Biological synthesis of metallic nanoparticles: Making sense of greenness versus unforeseen arbitraries. Journal of Hazardous Toxic and Radioactive Waste, 2016,20(2):04015015.
doi: 10.1061/(ASCE)HZ.2153-5515.0000294
[30]   Zhao X Y, Ding Y Y, Lu Y T, et al. Research progress on green synthesis of imidazo[1,2-a] pyridine compounds. Chinese Journal of Organic Chemistry, 2019,39(5):1304-1315.
doi: 10.6023/cjoc201809034
[31]   Xue Q, Zhang H J, Zhu M S, et al. Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes. RSC Advances, 2016,6(82):79090-79094.
doi: 10.1039/C6RA16744F
[32]   Thambiraj S, Shankaran D R. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Applied Surface Science, 2016,390(1):435-443.
doi: 10.1016/j.apsusc.2016.08.106
[33]   Kumar A. Simultaneous passivation and encapsulation of black phosphorus nanosheets (phosphorene) by optically active polypeptide micelles for biosensors. ACS Applied Nano Materials, 2019,2(4):2397-2404.
doi: 10.1021/acsanm.9b00265
[34]   Zhang S, Sunami Y, Hashimoto H. Mini review: Nanosheet technology towards biomedical application. Nanomaterials, 2017,7(9):246.
doi: 10.3390/nano7090246
[35]   Guo N N, Zhang S, Wang L X, et al. Application of plant-based porous carbon for supercapacitors. Acta Physico-Chimica Sinica, 2020,36(2):1903055.
doi: 10.3866/PKU.WHXB201903055
[36]   Xu C, Stromme M. Sustainable porous carbon materials derived from wood-based biopolymers for CO2 capture. Nanomaterials, 2019,9(1):103.
doi: 10.3390/nano9010103
[37]   Zhang Y, Yang L, Yan L, et al. Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coordination Chemistry Reviews, 2019,391(1):69-89.
doi: 10.1016/j.ccr.2019.04.006
[1] TAN Qing-li,LIN Dai-heng,LIU Jia-yuan,LIN Xing-chun. Study on the Benefits of Biomedical Industry in the Guangdong-Hong Kong-Macao Greater Bay Area Based on Grey Comprehensive Correlation Analysis[J]. China Biotechnology, 2021, 41(6): 89-97.
[2] XIA Tai-shou, WANG Yuan-lei, TIAN Li-li. Reserch on Present Situation and Countermeasure of Jiangsu Biomedical Business Based on Patent[J]. China Biotechnology, 2016, 36(8): 123-130.
[3] ZHAO Jun. Insight into the Construction of the Bioenergy Industrial Ecosystem[J]. China Biotechnology, 2014, 34(7): 102-107.
[4] ZHAO Jun. Insight into the Evolution Process and the Dynamic Mechanism of the Bioenergy Industry[J]. China Biotechnology, 2014, 34(10): 101-107.
[5] LI Rui-Guo, YIN Jun-Xiang, ZHANG Da-Lu. Status and Trends Analysis of Thailand Bioindustry Development[J]. China Biotechnology, 2010, 30(07): 116-120.