Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (5): 118-133    DOI: 10.13523/j.cb.2310009
技术情报     
合成生物学领域技术发展态势与研究进展*
江洪1,2,3,**(),李晓南1,2,3,高倩1,3
1 中国科学院武汉文献情报中心 武汉 430071
2 中国科学院大学经济与管理学院信息资源管理系 北京 101408
3 科技大数据湖北省重点实验室 武汉 430071
Technology Development Trend and Research Progress of Synthetic Biology
JIANG Hong1,2,3,**(),LI Xiaonan1,2,3,GAO Qian1,3
1 Wuhan Library,Chinese Academy of Sciences,Wuhan 430071, China
2 Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
3 Hubei Key Laboratory of Big Data in Science and Technology, Wuhan 430071, China
 全文: PDF(1642 KB)   HTML
摘要:

近年来,合成生物学因其所具有的革命式、颠覆式创新潜力,已经成为世界各国必争的科技战略高地,正在引发新一轮的科技与产业国际竞争。对比分析国内外合成生物学领域的专利发展态势,梳理全球合成生物学在元件工程、线路工程、代谢工程、基因组与细胞工程的基础研究前沿,并对合成生物学在医疗、食品、农业等领域的应用进行归纳。最后针对国家宏观支持、专利技术应用、基础研究发展三个方面提出对我国合成生物学进一步发展的启示与建议。

关键词: 合成生物学专利分析元件工程线路工程代谢工程基因组工程    
Abstract:

In recent years, due to its revolutionary and disruptive innovation potential, synthetic biology has become a strategic highland for science and technology in all countries of the world, triggering a new round of international competition in science and technology and industry. This paper compares and analyzes the patent development trend in the field of synthetic biology at home and abroad, sorts out the basic research frontiers of global synthetic biology in synthetic biological parts engineering, circuit engineering, metabolic engineering, genome and cell engineering, and summarizes the application of synthetic biology in the fields of medicine, food, agriculture and other fields. Finally, it provides insights and suggestions for the further development of synthetic biology in China from the three aspects of national macro support, patent technology application, and basic research development.

Key words: Synthetic biology    Patent analysis    Synthetic biological parts engineerin    Circuit engineering    Metabolic engineering    Genome
收稿日期: 2023-10-10 出版日期: 2024-06-05
ZTFLH:  Q819  
基金资助: * 湖北省软科学研究重点项目(2023EDA019)
通讯作者: ** 电子信箱:jianghong@mail.whlib.ac.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
江洪
李晓南
高倩

引用本文:

江洪, 李晓南, 高倩. 合成生物学领域技术发展态势与研究进展*[J]. 中国生物工程杂志, 2024, 44(5): 118-133.

JIANG Hong, LI Xiaonan, GAO Qian. Technology Development Trend and Research Progress of Synthetic Biology. China Biotechnology, 2024, 44(5): 118-133.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2310009        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I5/118

图1  2000年以来全球主要国家/地区合成生物学战略布局发展情况
图2  全球专利申请趋势对比
来源国 受理国
中国 美国 WIPO 日本 欧洲专利局 韩国 澳大利亚 加拿大 印度 俄罗斯
美国 326 2 198 1 002 507 740 140 436 291 105 46
中国 5 807 109 129 24 86 10 12 17 5 3
日本 100 100 194 121 710 38 38 41 13 10
德国 44 98 127 25 167 18 22 35 5 10
韩国 48 73 53 28 39 541 7 1 2 3
英国 20 83 68 28 58 7 28 20 11 8
印度 12 30 35 10 18 8 7 4 147 2
澳大利亚 7 45 21 18 24 6 131 15 5 5
俄罗斯 2 4 12 1 7 4 1 9 0 218
加拿大 8 8 69 36 1 26 4 0 41 1
表1  全球合成生物学专利受理国和来源国矩阵
排序 IPC分类号(小类) 释义 专利数
1 C12N 微生物或酶;其组合物;繁殖、保藏或维持微生物;变异或遗传工程;培养基 7 467
2 A61K 医用、牙科用或化妆用的配制品 3 492
3 C12Q 包含酶、核酸或微生物的测定或检验方法 2 853
4 C12P 发酵或使用酶的方法合成目标化合物或组合物,或从外消旋混合物中分离旋光异构体 2 653
5 C07K 2 405
6 A61P 化合物或药物制剂的特定治疗活性 1 958
7 G01N 借助于测定材料的化学或物理性质来测试或分析材料 1 793
8 C12R 与微生物C12C至C12Q小类相关的引得表 1 054
9 C07H 糖类及其衍生物;核苷;核苷酸;核酸 1 039
10 C07D 杂环化合物 675
表2  全球合成生物学领域专利技术构成排名前十位
图3  全球合成生物学专利技术应用领域分布
申请人 专利数 技术特长 近期专利
江南大学 177 工程菌和高效酶开发;化学品生物制造 CN113957027B;CN113957027B
INBIOSE 88 糖类合成和生物生产技术 AU2022256796A9;EP4277983A1
麻省理工学院 86 DNA组装;基因编辑;哺乳动物合成转录调控 WO2023225660A1;WO2023077119A1
加州大学 84 合成基因簇;蛋白质改造;基因表达调控;化学品生物合成 WO2022256227A1;US20210284972A1
哈佛大学 81 基因编辑 ;表观遗传测序;DNA合成;DNA折纸 HK1228456B;US11530436B2
上海交通大学 69 天然产物与生物合成;噬菌体;酶学催化剂;DNA合成与测序 CN110777105A;CN108192957B
陶氏公司 66 合成生物学技术在农业科技、种子、农药、植物生长调节等领域的应用 ZA201409509A;AR102611A1
MERCK CO INC 64 生物制药、制剂和生物工程;药物筛选和生物分析 CY1110525T1;NO20064815L
SYNTHETIC GENOMICS INC 63 藻类工程菌株;生物燃料;病毒基因工程 US20190241921A1;JP2021048883A
天津大学 62 微生物基因组设计合成;人工细胞工厂;DNA组装、DNA存储计算等新技术 CN117050997A;CN117018530A
浙江大学 62 使能技术与调控工具开发;天然产物与生物合成 CN114736907B;CN114391549A
表3  全球合成生物学领域代表专利权人
[1] 赵国屏. 合成生物学: 开启生命科学“会聚” 研究新时代. 中国科学院院刊, 2018, 33(11): 1135-1149.
Zhao G P. Synthetic biology: unsealing the convergence era of life science research. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1135-1149.
[2] Rawis R L. ‘synthetic biology’ makes its debut. Chemical & Engineering News Archive, 2000, 78(17): 49-53.
[3] 辛竹琳, 何微, 王晓梅, 等.全球合成生物学专利发展格局及对中国的启示. 农业展望, 2023, 19(7): 105-113.
Xin Z L, He W, Wang X M, et al. Landscape of synthetic biology based on global patents and its enlightenment to China. Agricultural Outlook, 2023, 19(7): 105-113.
[4] 严伟, 信丰学, 董维亮, 等. 合成生物学及其研究进展. 生物学杂志, 2020, 37(5): 1-9.
Yan W, Xin F X, Dong W L, et al. Synthetic biology and research progress. Journal of Biology, 2020, 37(5): 1-9.
[5] Wu X X, Li F Z, Yang R F, et al. Identification of a bidirectional promoter from Trichoderma reesei and its application in dual gene expression. Journal of Fungi, 2022, 8(10): 1059.
[6] Liu T S, Wu K F, Jiang H W, et al. Identification of a far-red light-inducible promoter that exhibits light intensity dependency and reversibility in a Cyanobacterium. ACS Synthetic Biology, 2023, 12(4): 1320-1330.
[7] Forestier E C F, Cording A C, Loake G J, et al. An engineered heat-inducible expression system for the production of casbene in Nicotiana benthamiana. International Journal of Molecular Sciences, 2023, 24(14): 11425.
[8] 于慧敏, 郑煜堃, 杜岩, 等. 合成生物学研究中的微生物启动子工程策略. 合成生物学, 2021, 2(4): 598-611.
doi: 10.12211/2096-8280.2020-092
Yu H M, Zheng Y K, Du Y, et al. Microbial promoter engineering strategies in synthetic biology. Synthetic Biology Journal, 2021, 2(4): 598-611.
doi: 10.12211/2096-8280.2020-092
[9] Vidal L, Lebrun E, Park Y K, et al. Bidirectional hybrid erythritol-inducible promoter for synthetic biology in Yarrowia lipolytica. Microbial Cell Factories, 2023, 22(1): 7.
doi: 10.1186/s12934-023-02020-6 pmid: 36635727
[10] Guo X, Bai Z Z, Zhang Y, et al. Mining and application of constitutive promoters from Rhodosporidium toruloides. AMB Express, 2023, 13(1): 17.
[11] Milito A, Aschern M, McQuillan J L, et al. Challenges and advances towards the rational design of microalgal synthetic promoters in Chlamydomonas reinhardtii. Journal of Experimental Botany, 2023, 74(13): 3833-3850.
[12] Chen C, Chen J, Wu G X, et al. A blue light-responsive strong synthetic promoter based on rational design in Chlamydomonas reinhardtii. International Journal of Molecular Sciences, 2023, 24(19): 14596.
[13] Feng X J, Jia L, Cai Y T, et al. ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. Plant Biotechnology Journal, 2022, 20(11): 2077-2088.
doi: 10.1111/pbi.13889 pmid: 35796628
[14] Kar S, Bordiya Y, Rodriguez N, et al. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors. Plant Methods, 2022, 18(1): 42.
doi: 10.1186/s13007-022-00867-1 pmid: 35351174
[15] Moreno-Giménez E, Selma S, Calvache C, et al. GB_SynP: a modular dCas9-regulated synthetic promoter collection for fine-tuned recombinant gene expression in plants. ACS Synthetic Biology, 2022, 11(9): 3037-3048.
doi: 10.1021/acssynbio.2c00238 pmid: 36044643
[16] Danila F, Schreiber T, Ermakova M, et al. A single promoter-TALE system for tissue-specific and tuneable expression of multiple genes in rice. Plant Biotechnology Journal, 2022, 20(9): 1786-1806.
[17] Jameel A, Ketehouli T, Wang Y F, et al. Detection and validation of cis-regulatory motifs in osmotic stress-inducible synthetic gene switches via computational and experimental approaches. Functional Plant Biology, 2022, 49(12): 1043-1054.
doi: 10.1071/FP21314 pmid: 35940614
[18] Song H Y, Yang Y F, Li H, et al. Determination of nucleotide sequences within promoter regions affecting promoter compatibility between zymomonas mobilis and Escherichia coli. ACS Synthetic Biology, 2022, 11(8): 2811-2819.
[19] Liu J, Liu M S, Shi T, et al. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an l-proline exporter for l-proline hyperproduction. Nature Communications, 2022, 13: 891.
doi: 10.1038/s41467-022-28501-7 pmid: 35173152
[20] Ni X X, Liu Z Y, Guo J T, et al. Development of Terminator-promoter bifunctional elements for application in Saccharomyces cerevisiae pathway engineering. International Journal of Molecular Sciences, 2023, 24(12): 9870.
[21] LaFleur T L, Hossain A, Salis H M. Automated model-predictive design of synthetic promoters to control transcriptional profiles in bacteria. Nature Communications, 2022, 13: 5159.
doi: 10.1038/s41467-022-32829-5 pmid: 36056029
[22] Zhang P C, Wang H C, Xu H W, et al. Deep flanking sequence engineering for efficient promoter design using DeepSEED. Nature Communications, 2023, 14: 6309.
doi: 10.1038/s41467-023-41899-y pmid: 37813854
[23] Vaishnav E D, de Boer C G, Molinet J, et al. The evolution, evolvability and engineering of gene regulatory DNA. Nature, 2022, 603: 455-463.
[24] Zrimec J, Fu X Z, Muhammad A S, et al. Controlling gene expression with deep generative design of regulatory DNA. Nature Communications, 2022, 13: 5099.
doi: 10.1038/s41467-022-32818-8 pmid: 36042233
[25] Zhao S Q, Hong C K Y, Myers C A, et al. A single-cell massively parallel reporter assay detects cell-type-specific gene regulation. Nature Genetics, 2023, 55: 346-354.
doi: 10.1038/s41588-022-01278-7 pmid: 36635387
[26] Gallego Romero I, Lea A J. Leveraging massively parallel reporter assays for evolutionary questions. Genome Biology, 2023, 24(1): 26.
doi: 10.1186/s13059-023-02856-6 pmid: 36788564
[27] Xiao F X, Zhang Y P, Zhang L, et al. Construction of the genetic switches in response to mannitol based on artificial MtlR box. Bioresources and Bioprocessing, 2023, 10(1): 9.
[28] Li H, Yan Y, Chen J, et al. Artificial receptor-mediated phototransduction toward protocellular subcompartmentalization and signaling-encoded logic gates. Science Advances, 2023, 9(9): eade5853.
[29] Ghataora J S, Gebhard S, Reeksting B J. Chimeric MerR-family regulators and logic elements for the design of metal sensitive genetic circuits in Bacillus subtilis. ACS Synthetic Biology, 2023, 12(3): 735-749.
doi: 10.1021/acssynbio.2c00545 pmid: 36629785
[30] Kameda S, Ohno H, Saito H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Research, 2023, 51(4): e24.
[31] Zhou Z, Liu Y T, Feng Y S, et al. Engineering longevity-design of a synthetic gene oscillator to slow cellular aging. Science, 2023, 380(6643): 376-381.
doi: 10.1126/science.add7631 pmid: 37104589
[32] Kawasaki S, Ono H, Hirosawa M, et al. Programmable mammalian translational modulators by CRISPR-associated proteins. Nature Communications, 2023, 14: 2243.
doi: 10.1038/s41467-023-37540-7 pmid: 37076490
[33] Zhu R H, Del Rio-Salgado J M, Garcia-Ojalvo J, et al. Synthetic multistability in mammalian cells. Science, 2022, 375(6578): eabg9765.
[34] Ning H, Liu G, Li L, et al. Rational design of microRNA-responsive switch for programmable translational control in mammalian cells. Nature Communications, 2023, 14: 7193.
doi: 10.1038/s41467-023-43065-w pmid: 37938567
[35] Kamel N, Kharma N, Perreault J. Evolutionary design and analysis of ribozyme-based logic gates. Genetic Programming and Evolvable Machines, 2023, 24(2): 11.
[36] Zhu J W, Chu P, Fu X F. Unbalanced response to growth variations reshapes the cell fate decision landscape. Nature Chemical Biology, 2023, 19: 1097-1104.
doi: 10.1038/s41589-023-01302-9 pmid: 36959461
[37] Sun Z, Wei W J, Zhang M Y, et al. Synthetic robust perfect adaptation achieved by negative feedback coupling with linear weak positive feedback. Nucleic Acids Research, 2022, 50(4): 2377-2386.
doi: 10.1093/nar/gkac066 pmid: 35166832
[38] Qin C R, Xiang Y H, Liu J, et al. Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system. Nature Communications, 2023, 14: 1500.
doi: 10.1038/s41467-023-37244-y pmid: 36932109
[39] Sequeiros C, Vázquez C, Banga J R, et al. Automated design of synthetic gene circuits in the presence of molecular noise. ACS Synthetic Biology, 2023, 12(10): 2865-2876.
doi: 10.1021/acssynbio.3c00033 pmid: 37812682
[40] Chen Z B, Kibler R D, Hunt A, et al. De novo design of protein logic gates. Science, 2020, 368(6486): 78-84.
doi: 10.1126/science.aay2790 pmid: 32241946
[41] Watson J L, Juergens D, Bennett N R, et al. De novo design of protein structure and function with RFdiffusion. Nature, 2023, 620: 1089-1100.
[42] Lee J S, Kim J, Kim P M. Score-based generative modeling for de novo protein design. Nature Computational Science, 2023, 3: 382-392.
[43] Praetorius F, Leung P J Y, Tessmer M H, et al. Design of stimulus-responsive two-state hinge proteins. Science, 2023, 381(6659): 754-760.
doi: 10.1126/science.adg7731 pmid: 37590357
[44] Guo Z, Smutok O, Ayva C E, et al. Development of epistatic YES and AND protein logic gates and their assembly into signalling cascades. Nature Nanotechnology, 2023, 18: 1327-1334.
[45] Tan K X, Hu Y X, Liang Z H, et al. Dual input-controlled synthetic mRNA circuit for bidirectional protein expression regulation. ACS Synthetic Biology, 2023, 12(9): 2516-2523.
[46] Hu S L, Fei M Y, Fu B B, et al. Development of probiotic E. coli Nissle 1917 for β-alanine production by using protein and metabolic engineering. Applied Microbiology and Biotechnology, 2023, 107(7): 2277-2288.
[47] Zhou C, Chen T J, Gu A D, et al. Combining protein and metabolic engineering to achieve green biosynthesis of 12β-O-Glc-PPD in Saccharomyces cerevisiae. Green Chemistry, 2023, 25(4): 1356-1367.
[48] An T, Lin G Y, Liu Y, et al. De novo biosynthesis of anticarcinogenic icariin in engineered yeast. Metabolic Engineering, 2023, 80: 207-215.
doi: 10.1016/j.ymben.2023.10.003 pmid: 37852432
[49] Chen Y M, Han A, Wang M, et al. Metabolic engineering of Trichoderma reesei for l-malic acid production. Journal of Agricultural and Food Chemistry, 2023, 71(9): 4043-4050.
[50] Garg A, Jers C, Hwang H J, et al. Engineering Bacillus subtilis for production of 3-hydroxypropanoic acid. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1101232.
[51] Wu Y K, Li Y, Jin K, et al. CRISPR-dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization. Nature Chemical Biology, 2023, 19: 367-377.
doi: 10.1038/s41589-022-01230-0 pmid: 36646959
[52] Zhang J, Hansen L G, Gudich O, et al. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature, 2022, 609: 341-347.
[53] Du H M, Qiao J F, Qi Y T, et al. Reprogramming the sulfur recycling network to improve l-cysteine production in Corynebacterium glutamicum. Green Chemistry, 2023, 25(8): 3152-3165.
[54] Wang Y P, Ferrinho S, Connaris H, et al. The impact of viral infection on the chemistries of the earth’s most abundant photosynthesizes: metabolically talented aquatic cyanobacteria. Biomolecules, 2023, 13(8): 1218.
[55] Liang H Y, Chen H J, Liu X Y, et al. Heterologous production in the Synechocystis chassis suggests the biosynthetic pathway of astaxanthin in cyanobacteria. Antioxidants, 2023, 12(10): 1826.
[56] Russo M T, Rogato A, Jaubert M, et al. Phaeodactylum tricornutum: an established model species for diatom molecular research and an emerging chassis for algal synthetic biology. Journal of Phycology, 2023, 59(6): 1114-1122.
doi: 10.1111/jpy.13400 pmid: 37975560
[57] Kallam K, Moreno-Giménez E, Mateos-Fernández R, et al. Tunable control of insect pheromone biosynthesis in Nicotiana benthamiana. Plant Biotechnology Journal, 2023, 21(7): 1440-1453.
[58] Chen Q, Liu D Q, Qu Y, et al. Construction of plant cell factory for biosynthesis of ginsenoside Rh 2 in tobacco. Industrial Crops and Products, 2023, 192: 116057.
[59] Ma Y S, Liu N, Greisen P, et al. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nature Communications, 2022, 13: 572.
[60] Kang Q, Fang H, Xiang M J, et al. A synthetic cell-free 36-enzyme reaction system for vitamin B12 production. Nature Communications, 2023, 14: 5177.
[61] Tian X T, Liu W Q, Xu H L, et al. Cell-free expression of NO synthase and P 450 enzyme for the biosynthesis of an unnatural amino acid L-4-nitrotryptophan. Synthetic and Systems Biotechnology, 2022, 7(2): 775-783.
[62] Yeh A H W, Norn C, Kipnis Y, et al. De novo design of luciferases using deep learning. Nature, 2023, 614: 774-780.
[63] Cao F F, Jin L L, Gao Y, et al. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nature Nanotechnology, 2023, 18: 617-627.
[64] Zhao P X, Kong F H, Jiang Y P, et al. Enabling peroxygenase activity in cytochrome P 450 monooxygenases by engineering hydrogen peroxide tunnels. Journal of the American Chemical Society, 2023, 145(9): 5506-5511.
[65] Hassani D, Taheri A, Fu X Q, et al. Elevation of artemisinin content by co-transformation of artemisinin biosynthetic pathway genes and trichome-specific transcription factors in Artemisia annua. Frontiers in Plant Science, 2023, 14: 1118082.
[66] Wu Y T, Liu J Q, Han X, et al. Eliminating host-guest incompatibility via enzyme mining enables the high-temperature production of N-acetylglucosamine. iScience, 2023, 26(1): 105774.
[67] Yu H, Deng H X, He J H, et al. UniKP: a unified framework for the prediction of enzyme kinetic parameters. Nature Communications, 2023, 14: 8211.
doi: 10.1038/s41467-023-44113-1 pmid: 38081905
[68] Mao Z T, Yuan Q Q, Li H R, et al. CAVE: a cloud-based platform for analysis and visualization of metabolic pathways. Nucleic Acids Research, 2023, 51(W1): W70-W77.
doi: 10.1093/nar/gkad360 pmid: 37158271
[69] Shen Y, Gao F, Wang Y, et al. Dissecting aneuploidy phenotypes by constructing Sc2.0 chromosome VII and SCRaMbLEing synthetic disomic yeast. Cell Genomics, 2023, 3(11): 100364.
[70] Williams T C, Kroukamp H, Xu X, et al. Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects. Cell Genomics, 2023, 3(11): 100379.
[71] McCulloch L H, Sambasivam V, Hughes A L, et al. Consequences of a telomerase-related fitness defect and chromosome substitution technology in yeast synIX strains. Cell Genomics, 2023, 3(11): 100419.
[72] Blount B A, Lu X Y, Driessen M R M, et al. Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics. Cell Genomics, 2023, 3(11): 100418.
[73] Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science, 2022, 376(6588): 44-53.
doi: 10.1126/science.abj6987 pmid: 35357919
[74] Rautiainen M, Nurk S, Walenz B P, et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nature Biotechnology, 2023, 41: 1474-1482.
doi: 10.1038/s41587-023-01662-6 pmid: 36797493
[75] Yang C T, Zhou Y, Song Y N, et al. The complete and fully-phased diploid genome of a male Han Chinese. Cell Research, 2023, 33: 745-761.
doi: 10.1038/s41422-023-00849-5 pmid: 37452091
[76] Gao Y, Yang X F, Chen H, et al. A pangenome reference of 36 Chinese populations. Nature, 2023, 619: 112-121.
[77] Chen J, Wang Z J, Tan K W, et al. A complete telomere-to-telomere assembly of the maize genome. Nature Genetics, 2023, 55: 1221-1231.
doi: 10.1038/s41588-023-01419-6 pmid: 37322109
[78] Huang Z, Xu Z X, Bai H, et al. Evolutionary analysis of a complete chicken genome. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(8): e2216641120.
[79] Coradini A L V, Ville C N, Krieger Z A, et al. Building synthetic chromosomes from natural DNA. Nature Communications, 2023, 14: 8337.
doi: 10.1038/s41467-023-44112-2 pmid: 38123566
[80] Sun C, Lei Y, Li B S, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nature Biotechnology, 2024, 42: 316-327.
[81] Zürcher J F, Kleefeldt A A, Funke L F H, et al. Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly. Nature, 2023, 619: 555-562.
[82] Zhao Y C, Han J L, Tan J T, et al. Efficient assembly of long DNA fragments and multiple genes with improved nickase-based cloning and Cre/loxP recombination. Plant Biotechnology Journal, 2022, 20(10): 1983-1995.
doi: 10.1111/pbi.13882 pmid: 35767383
[83] Zhang W M, Golynker I, Brosh R, et al. Mouse genome rewriting and tailoring of three important disease loci. Nature, 2023, 623: 423-431.
[84] Kretzmann J A, Liedl A, Monferrer A, et al. Gene-encoding DNA origami for mammalian cell expression. Nature Communications, 2023, 14: 1017.
doi: 10.1038/s41467-023-36601-1 pmid: 36823187
[85] Moger-Reischer R Z, Glass J I, Wise K S, et al. Evolution of a minimal cell. Nature, 2023, 620: 122-127.
[86] Belluati A, Jimaja S, Chadwick R J, et al. Artificial cell synthesis using biocatalytic polymerization-induced self-assembly. Nature Chemistry, 2024, 16: 564-574.
[87] Ji Y, Lin Y Y, Qiao Y. Plant cell-inspired membranization of coacervate protocells with a structured polysaccharide layer. Journal of the American Chemical Society, 2023, 145(23): 12576-12585.
doi: 10.1021/jacs.3c01326 pmid: 37267599
[88] 包心茹, 陈卯森, 钟洁, 等. CRISPR/Cas12a基因组编辑技术及应用. 中国生物工程杂志, 2023, 43(10): 32-42.
Bao X R, Chen M S, Zhong J, et al. Characteristics and application of CRISPR/Cas12a genome editing technology. China Biotechnology, 2023, 43(10): 32-42.
[89] Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell, 2022, 185(2): 250-265.e16.
doi: 10.1016/j.cell.2021.12.021 pmid: 35021064
[90] Kreitz J, Friedrich M J, Guru A, et al. Programmable protein delivery with a bacterial contractile injection system. Nature, 2023, 616: 357-364.
[91] Tang J C, Li W C, Chiu T Y, et al. Synthesis of portimines reveals the basis of their anti-cancer activity. Nature, 2023, 622: 507-513.
[92] Sha G, Sun P, Kong X J, et al. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature, 2023, 618: 1017-1023.
[93] 2022年中国合成生物学绿色应用与产业感知调研组. 合成生物企业与产品分析. 中国生物工程杂志, 2023, 43(4): 141-147.
2022 China Synthetic Biology Green Application and Industry Perception Research Group. Synthetic biological enterprises and product analysis. China Biotechnology, 2023, 43(4): 141-147.
[94] Nguyen P Q, Soenksen L R, Donghia N M, et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nature Biotechnology, 2021, 39: 1366-1374.
doi: 10.1038/s41587-021-00950-3 pmid: 34183860
[95] “中国学科及前沿领域发展战略研究(2021-2035)”项目组. 中国合成生物学2035发展战略. 北京: 科学出版社, 2023:493-500.
“Research on the Development Strategy of China’s Disciplines and Frontier Fields (2021-2035)” Project Team. China synthetic biology 2035 development strategy. Beijing: Science Press, 2023:493-500.
[96] 赵国屏. 从定量合成生物学“出圈儿”谈起:我国迎来定量合成生物学发展重要契机.[2023-12-24]. https://www.cas.cn/zjs/202112/t20211206_4817121.shtml.
Zhao G P. Starting from the “out of the circle” of quantitative synthetic biology: China has ushered in an important opportunity for the development of quantitative synthetic biology.[2023-12-24]. https://www.cas.cn/zjs/202112/t20211206_4817121.shtml.
[1] 李佩贤, 李娇娇, 刘倩, 张婕, 齐浩. 在大肠杆菌体内外调控一致的5'-UTR序列挖掘*[J]. 中国生物工程杂志, 2024, 44(5): 20-31.
[2] 王瑞彬, 董世瑞. 基于小RNA调控工具在蓝藻合成生物学中的应用*[J]. 中国生物工程杂志, 2024, 44(2/3): 176-189.
[3] 徐显皓, 刘龙, 陈坚. 合成生物学与未来食品*[J]. 中国生物工程杂志, 2024, 44(1): 61-71.
[4] 李玉娟, 傅雄飞, 张先恩. 合成生物学发展脉络概述[J]. 中国生物工程杂志, 2024, 44(1): 52-60.
[5] 许丽, 杨若南, 王玥, 施慧琳, 李祯祺, 靳晨琦, 李伟, 徐萍. 生命健康科技领域发展态势*[J]. 中国生物工程杂志, 2024, 44(1): 32-40.
[6] 左锟澜, 邹诗施, 吴宗震, 国原源, 徐雁龙, 刘欢. 病原体相关合成生物学的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(9): 120-130.
[7] 洪霞, 田开仁, 乔建军, 李艳妮. 基因编码型生物传感器在微生物细胞工厂中的应用进展*[J]. 中国生物工程杂志, 2023, 43(9): 62-76.
[8] 万娅, 孟栋, 李金玲, 李春, 王颖. 细胞区室化调控萜类化合物微生物合成*[J]. 中国生物工程杂志, 2023, 43(9): 93-104.
[9] 李佳文, 范雨萱, 李福利, 张朝辉, 王士安. 基于油质蛋白oleosin鉴定短序列脂滴定位信号*[J]. 中国生物工程杂志, 2023, 43(7): 36-43.
[10] 付萌萌, 苏丹丹, 左锟澜, 吴宗震, 李思思, 徐雁龙, 刘欢. 人体免疫相关的合成生物学生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(6): 125-132.
[11] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[12] 张鸿伟, 王鹏超. 微生物辅因子工程研究进展*[J]. 中国生物工程杂志, 2023, 43(4): 112-122.
[13] 刘亭亭, 张平, 张悦. 光控表达系统在合成生物学中的调控作用*[J]. 中国生物工程杂志, 2023, 43(4): 92-100.
[14] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[15] 陈玉阳,刘家源,黄子芹,陈禹保,徐文娟,龙峰. 表面等离子体共振生物传感器知识产权的发展态势研究*[J]. 中国生物工程杂志, 2023, 43(11): 116-126.