Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (4): 112-122    DOI: 10.13523/j.cb.2211030
综述     
微生物辅因子工程研究进展*
张鸿伟,王鹏超()
东北林业大学生命科学学院 哈尔滨 150040
Research Progress of Microbial Cofactor Engineering
ZHANG Hong-wei,WANG Peng-chao()
School of Life Sciences, Northeast Forestry University, Harbin 150040, China
 全文: PDF(1272 KB)   HTML
摘要:

微生物细胞中的大部分酶促反应都需要各种辅因子的参与,辅因子平衡对维持细胞内的生化反应稳态非常重要,辅因子供应不足会导致细胞生长和化合物生产的紊乱。近年来,辅因子在生化反应过程中的关键作用备受关注,但由于其价格较昂贵、稳定性差,因此限制了辅因子工程的发展。合成生物学和代谢工程的发展为辅因子的可持续供应提供了可行的解决方案,多种加强辅因子供应的策略有效地推动了目标化合物的生物合成。其中,烟酰胺类辅因子NAD(P)+、NAD(P)H是微生物代谢过程中最常见的氧化还原辅因子,它们在所有生物体内作为重要的电子受体或供体推动合成与分解代谢反应,对维持胞内氧化还原动态平衡起着决定性作用。从NAD(P)H的主要来源和NAD(P)+/NAD(P)H的平衡对天然产物生物合成中的影响出发,重点从三个不同维度讨论辅因子工程策略,综述代谢途径调节、外源氧化还原酶的引入、蛋白质工程等多种辅因子再生策略的最新研究进展及应用,展望辅因子代谢工程在生物合成中的未来发展方向。

关键词: 辅因子工程NAD(P)H/NAD(P)+氧化还原平衡代谢工程    
Abstract:

Various cofactors are required in the process of most enzyme-catalyzed reaction of cells. Cofactor balance is very important to maintain the homeostasis of biochemical reaction in cells. However, insufficient supply of cofactors will lead to the disorder of cell growth and compound production. In recent years, the key role of cofactors in the biochemical reaction process has attracted the attention of researchers, but most cofactors are expensive and have poor stability. These disadvantages have limited the potential application of cofactor engineering. The development of synthetic biology and metabolic engineering provides feasible solutions for the sustainable supply of cofactors, and multiple strategies to strengthen the supply of cofactors effectively promote the biosynthesis of target compounds. Among them, nicotinamide cofactors NAD(P)+ and NAD(P)H are the most common redox cofactors in the process of microbial metabolism. They are important electron receptors or donors in all organisms, promote synthesis and catabolism reactions, and play a decisive role in maintaining the dynamic balance of intracellular redox. Starting from the main sources of NAD(P)H and the influence of NAD(P)+/NAD(P)H balance in the synthesis of natural products, cofactor engineering strategies were reviewed from three different dimensions. This paper introduces the latest research progress and application of multiple cofactor regeneration strategies through metabolic pathway regulation, introduction of exogenous oxidoreductase, and protein engineering. The future development prospects of cofactor metabolic engineering in biosynthesis is also discussed.

Key words: Cofactor engineering    NAD(P)H/NAD(P)+    Redox balance    Metabolic engineering
收稿日期: 2022-11-14 出版日期: 2023-05-04
ZTFLH:  Q939  
基金资助: 中央高校基本科研业务费专项(2572022BD03);国家自然科学基金(31900064)
通讯作者: **电子信箱:pengchaowang1990@nefu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张鸿伟
王鹏超

引用本文:

张鸿伟, 王鹏超. 微生物辅因子工程研究进展*[J]. 中国生物工程杂志, 2023, 43(4): 112-122.

ZHANG Hong-wei, WANG Peng-chao. Research Progress of Microbial Cofactor Engineering. China Biotechnology, 2023, 43(4): 112-122.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2211030        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I4/112

图1  辅酶NAD(P)H和NAD(P)+的结构式
图2  微生物中辅因子NAD(P)H代谢的相关途径
优化方向 酶或因子 来源 辅因子 代谢产物 策略 结果 参考文献
内源基因
-敲除
pgi Escherichia coli NADPH/
NADP+
甲羟戊酸 敲除了竞争途径的关键基因pgi Δpgi株的NADPH/NADP+比野生株高约7倍,从20 g/L葡萄糖中产出8.0 g/L的甲羟戊酸 [46]
pfkApfkB Escherichia coli NADPH/
NADP+
木糖醇 组合敲除sthApgipfkApfkB 基因,引入木糖还原酶(xylose reductase,XR)基因 利用15 L生物反应器从半纤维素水解液中产出131.6 g/L木糖醇 [47]
yahK Escherichia coli NADPH/
NADP+
四氢叶酸(4-hydroxyphenylacetic acid,4HPAA) 经过CRISPRi筛选,将NADPH消耗酶编码基因yahK敲除 使4HPAA的产量从6.32 g/L增加到7.76 g/L [48]
内源基因
-过表达
G6PDH Lactococcus
lactis
NADPH/
NADP+
L-5-甲基四氢叶酸(5-methyltetrahydrofolic acid,5-MTHF) 过表达G6PDH以加强生成NADPH NADPH浓度增加60%,5-MTHF产量增加35%(97 μg/L) [49]
ZWF1GND1 Yarrowia
lipolytica
NADPH/
NADP+
赤藓糖醇 过表达ZWF1GND1 以葡萄糖为碳源,在摇瓶中产出190 g/L的赤藓糖醇,比野生型菌株高23.5% [50]
Zwf1Gnd1 Saccharomyces
cerevisiae
NADPH/
NADP+
咖啡酸 过表达zwf1gnd1 将咖啡酸合成量提高到5.5 g/L,远高于已报道的0.8 g/L [51]
G6PD2、苹果酸酶(malic enzyme,ME2) Mortierella
alpina
NADPH/
NADP+
花生四烯酸 G6PD2和ME2共同过表达 产量达1.9 g/(L·d),比对照组高7.2倍 [52]
POS5 Saccharomyces
cerevisiae
NADPH/
NADH
角鲨烯 POS5和tHMG1共同过表达 共表达菌株的角鲨烯产量达58.6 mg/g细胞干重,与对照组相比增加27.5倍 [53]
内源基因
-调节因子
Anr Pseudomonas
xtremaustralis
NADPH/
NADP+
- Anr的缺失,降低对氧化应激的耐受性 可降低NADPH/NADP+比率 [54]
Stb5 Saccharomyces
cerevisiae
NADPH - STB5的缺失 NADPH水平显著降低 [55]
外源基因
-级联反应
环己酮单加氧酶(cyclohexanone
monooxygenase,CHMO)、乙醇脱氢酶(alcohol dehydrogenase,ADH)、脂肪酶(lipase,CAL-A)
Acinetobacter
calcoaceticus,
Candida
antarctica
NADPH/
NADP+
寡聚-ε-己内酯 外源三酶级联的引入,并对核糖体结合位点进行工程改造 20 mmol/L环己醇在16 h催化后几乎完全转化,对照组仅为20% [56]
膜结合转氢酶(membrane-bound transhydrogenase,PntAB)、NAD+激酶(NAD+ kinase,PpnK) Escherichia
coli,
Corynebacterium
lutamicum
NADPH/
NADP+/
NAD+
L-精氨酸 将外源膜结合转氢酶和NAD+激酶进行共表达 在5 L生物反应器中生成67.01 g/L的L-精氨酸,比原始菌株提高53.45% [57]
外源基因-过表达 甲酸脱氢酶(formate dehydrogenase,FDH) Mycobacterium
vaccae
NADPH/
NADP+
(2R, 5R)-二氢香芹酮 过表达外源FDH (R)-香芹酮转化率高达96.0%~99.2% [58]
谷氨酸脱氢酶(glutamate dehydrogenase,EcGDH) Escherichia coli NADPH/
NADP+
2-苯乙醇 EcGDH与外源转氨酶、乙醇脱氢酶在大肠杆菌中偶联过表达 生物催化效率提高3.8倍,获得43.6 mmol/L 2-苯乙醇 [59]
预苯酸脱氢酶(prephenate dehydrogenase,TyrAfbr) Escherichia coli NADH/
NAD+
羟基酪醇 外源引入TyrAfbr 与基础菌株相比,最终产物羟基酪醇产量提高了36.9%,达到1.12 g/L [60]
GAPDH、谷氨酸脱氢酶(glutamate dehydrogenase,ROCDH) Clostridium acetobutylicum,Bacillus subtilis NAD(P)H L-鸟氨酸 将不同的外源脱氢酶基因过表达 产生14.84 g/L的L-鸟氨酸,产量增加52.83% [26]
表1  NAD(P)H相关内源和外源基因在辅因子调控中的策略
图3  辅因子再生策略
来源 突变位点 功能 参考文献
SH Ralstonia eutropha E341A、S342R 使偏好从NAD+转变为NADP+ [64]
XR Pichia stipitis R276H 使偏好从NADPH转变为NADH [14]
CcIDH Campylobacter concisus Leu580、Leu591、Ala640 使偏好从NAD+转变为NADP+ [19]
GAPDH、MDH Corynebacterium glutamicum S9114 N208R、E47G、A51S 使GlcNAc的产量提高6.15倍 [3]
BstFDH Burkholderia stabilis G146M、A287G 与NADP+结合活性提高, K m N A D P +降低至0.09 mmol/L [66]
KpADH Kluyveromyces polysporus V84I、Y127M 提高了对NADP+的亲和力,kcat/KmWTKpADH
高11.6倍
[67]
CbADH Clostridium beijerinckii S24P、G182A、G196A、H222D、S250E、S254R 可溶性和高表达活性分别是野生型的16倍和3倍,进行产物转化时6 h内转化率达100% [68]
BsGDH、LkCR Lactobacillus kefirBacillus subtilis - 利用ER/K-10 nm连接肽融合表达,大幅消耗
1.2 mol的底物
[69]
表2  蛋白质工程在辅因子调控中的策略
[1] de Graef M R, Alexeeva S, Snoep J L, et al. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. Journal of Bacteriology, 1999, 181(8): 2351-2357.
pmid: 10197995
[2] 陈涣兰, 音提扎尔·吐尔逊买买提, 路婧, 等. 辅因子工程在微生物代谢中的应用进展. 食品与发酵科技, 2021, 57(6): 60-66.
Chen H L, Tuerxunmaimaiti Y, Lu J, et al. Application progress of cofactor engineering in the microbial metabolism. Food and Fermentation Sciences & Technology, 2021, 57(6): 60-66.
[3] Deng C, Lv X Q, Li J H, et al. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metabolic Engineering, 2021, 67: 330-346.
doi: 10.1016/j.ymben.2021.07.012
[4] Liu L M, Li Y, Shi Z P, et al. Enhancement of pyruvate productivity in Torulopsis glabrata: increase of NAD+ availability. Journal of Biotechnology, 2006, 126(2): 173-185.
doi: 10.1016/j.jbiotec.2006.04.014
[5] La Piana G, Marzulli D, Gorgoglione V, et al. Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH. Archives of Biochemistry and Biophysics, 2005, 436(1): 91-100.
pmid: 15752713
[6] Lin S J, Kaeberlein M, Andalis A A, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 2002, 418(6895): 344-348.
doi: 10.1038/nature00829
[7] Domergue R, Castaño I, De Las Peñas A, et al. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science, 2005, 308(5723): 866-870.
pmid: 15774723
[8] Pollak N, Dölle C, Ziegler M. The power to reduce: pyridine nucleotides-small molecules with a multitude of functions. Biochemical Journal, 2007, 402(2): 205-218.
doi: 10.1042/BJ20061638
[9] Liu H J, Colavitti R, Rovira II, et al. Redox-dependent transcriptional regulation. Circulation Research, 2005, 97(10): 967-974.
pmid: 16284189
[10] Beaufay F, De Bolle X, Hallez R. Metabolic control of cell division in α-proteobacteria by a NAD-dependent glutamate dehydrogenase. Communicative & Integrative Biology, 2016, 9(1): e1125052.
[11] Ying W H. NAD+ and NADH in cellular functions and cell death. Frontiers in Bioscience, 2006, 11: 3129-3148.
doi: 10.2741/2038
[12] Zhang Y X, Vadlani P V. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Journal of Bioscience and Bioengineering, 2015, 119(6): 694-699.
doi: 10.1016/j.jbiosc.2014.10.027
[13] Okino S, Inui M, Yukawa H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Applied Microbiology and Biotechnology, 2005, 68(4): 475-480.
doi: 10.1007/s00253-005-1900-y
[14] Watanabe S, Abu Saleh A, Pack S P, et al. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology, 2007, 153(Pt 9): 3044-3054.
doi: 10.1099/mic.0.2007/007856-0
[15] Balzer G J, Thakker C, Bennett G N, et al. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD+-dependent formate dehydrogenase. Metabolic Engineering, 2013, 20: 1-8.
doi: 10.1016/j.ymben.2013.07.005 pmid: 23876411
[16] Wang M, Chen B Q, Fang Y M, et al. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnology Advances, 2017, 35(8): 1032-1039.
doi: S0734-9750(17)30119-2 pmid: 28939499
[17] Hollmann F, Witholt B, Schmid A. [Cp Rh(bpy)(H2O)]2+: a versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzymes. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20: 167-176.
[18] Xu W, Yao J, Liu L J, et al. Improving squalene production by enhancing the NADPH/NADP+ ratio, modifying the isoprenoid-feeding module and blocking the menaquinone pathway in Escherichia coli. Biotechnology for Biofuels, 2019, 12(1): 68-77.
doi: 10.1186/s13068-019-1415-x
[19] Wang P, Chen X F, Yang J, et al. Characterization of the nicotinamide adenine dinucleotides (NAD+ and NADP+) binding sites of the monomeric isocitrate dehydrogenases from Campylobacter species. Biochimie, 2019, 160: 148-155.
doi: 10.1016/j.biochi.2019.03.007
[20] Kadowaki J T, Jones T H, Sengupta A, et al. Copper oxide-based cathode for direct NADPH regeneration. Scientific Reports, 2021, 11(1): 180-192.
doi: 10.1038/s41598-020-79761-6 pmid: 33420179
[21] Velmurugan R, Incharoensakdi A. Metal oxide mediated extracellular NADPH regeneration improves ethanol production by engineered Synechocystis sp. PCC 6803. Frontiers in Bioengineering and Biotechnology, 2019, 7: 148-157.
doi: 10.3389/fbioe.2019.00148 pmid: 31275934
[22] Tassano E, Hall M. Enzymatic self-sufficient hydride transfer processes. Chemical Society Reviews, 2019, 48(23): 5596-5615.
doi: 10.1039/c8cs00903a pmid: 31675020
[23] Liu J H, Li H L, Zhao G R, et al. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions. Journal of Industrial Microbiology and Biotechnology, 2018, 45(5): 313-327.
doi: 10.1007/s10295-018-2031-7 pmid: 29582241
[24] Chen L, Zhang Z Y, Hoshino A, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nature Metabolism, 2019, 1(3): 404-415.
doi: 10.1038/s42255-019-0043-x pmid: 32694724
[25] Spaans S K, Weusthuis R A, van der Oost J, et al. NADPH-generating systems in bacteria and archaea. Frontiers in Microbiology, 2015, 6: 742-769.
doi: 10.3389/fmicb.2015.00742 pmid: 26284036
[26] Jiang L Y, Zhang Y Y, Li Z, et al. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. Journal of Industrial Microbiology and Biotechnology, 2013, 40(10): 1143-1151.
doi: 10.1007/s10295-013-1306-2
[27] Sato T, Atomi H. Novel metabolic pathways in Archaea. Current Opinion in Microbiology, 2011, 14(3): 307-314.
doi: 10.1016/j.mib.2011.04.014
[28] Noda S, Mori Y, Oyama S, et al. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli. Microbial Cell Factories, 2019, 18(1): 124-134.
doi: 10.1186/s12934-019-1171-4
[29] Ng C Y, Farasat I, Maranas C D, et al. Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metabolic Engineering, 2015, 29: 86-96.
doi: S1096-7176(15)00027-0 pmid: 25769287
[30] Flamholz A, Noor E, Bar-Even A, et al. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 10039-10044.
[31] Fuhrer T, Fischer E, Sauer U. Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of Bacteriology, 2005, 187(5): 1581-1590.
pmid: 15716428
[32] Fabris M, Matthijs M, Rombauts S, et al. The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway. The Plant Journal: for Cell and Molecular Biology, 2012, 70(6): 1004-1014.
doi: 10.1111/tpj.2012.70.issue-6
[33] Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. Journal of Biological Chemistry, 2004, 279(8): 6613-6619.
doi: 10.1074/jbc.M311657200 pmid: 14660605
[34] Lee H D, Yoo S K, Yoo H S, et al. Expression and characterization of monomeric recombinant isocitrate dehydrogenases from Corynebacterium glutamicum and Azotobacter vinelandii for NADPH regeneration. International Journal of Molecular Sciences, 2022, 23(23): 15318-15330.
doi: 10.3390/ijms232315318
[35] Zhang H Y, Zhou Y S, Chen H Q, et al. Enhanced fatty acid production in Escherichia coli by over-expression of NADPH generating enzymes. American Journal of Biochemistry and Biotechnology, 2017, 13(4): 167-175.
doi: 10.3844/ajbbsp.2017.167.175
[36] van Rossum H M, Kozak B U, Pronk J T, et al. Engineering cytosolic acetyl-coenzyme a supply in Saccharomyces cerevisiae: pathway stoichiometry, free-energy conservation and redox-cofactor balancing. Metabolic Engineering, 2016, 36: 99-115.
doi: 10.1016/j.ymben.2016.03.006
[37] Sellés Vidal L, Kelly C L, Mordaka P M, et al. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2018, 1866(2): 327-347.
doi: 10.1016/j.bbapap.2017.11.005
[38] Holm A K, Blank L M, Oldiges M, et al. Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. The Journal of Biological Chemistry, 2010, 285(23): 17498-17506.
doi: 10.1074/jbc.M109.095570
[39] Gameiro P A, Laviolette L A, Kelleher J K, et al. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. Journal of Biological Chemistry, 2013, 288(18): 12967-12977.
doi: 10.1074/jbc.M112.396796 pmid: 23504317
[40] Chen X L, Li S B, Liu L M. Engineering redox balance through cofactor systems. Trends in Biotechnology, 2014, 32(6): 337-343.
doi: 10.1016/j.tibtech.2014.04.003 pmid: 24794722
[41] Xiao Y L, Chu L S, Sanakis Y, et al. Revisiting the IspH catalytic system in the deoxyxylulose phosphate pathway: achieving high activity. Journal of the American Chemical Society, 2009, 131(29): 9931-9933.
doi: 10.1021/ja903778d pmid: 19583210
[42] Sanchez A M, Andrews J, Hussein I, et al. Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnology Progress, 2006, 22(2): 420-425.
doi: 10.1021/bp050375u pmid: 16599556
[43] Verho R, Londesborough J, Penttilä M, et al. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2003, 69(10): 5892-5897.
doi: 10.1128/AEM.69.10.5892-5897.2003
[44] Ernst M, Kaup B, Müller M, et al. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Applied Microbiology and Biotechnology, 2005, 66(6): 629-634.
doi: 10.1007/s00253-004-1765-5 pmid: 15549291
[45] Xu X, Wang J J, Bao M, et al. Reverse metabolic engineering in lager yeast: impact of the NADH/NAD+ ratio on acetaldehyde production during the brewing process. Applied Microbiology and Biotechnology, 2019, 103(2): 869-880.
doi: 10.1007/s00253-018-9517-0
[46] Satowa D, Fujiwara R, Uchio S, et al. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply. Biotechnology and Bioengineering, 2020, 117(7): 2153-2164.
doi: 10.1002/bit.v117.7
[47] Yuan X S, Wang J P, Lin J P, et al. Efficient production of xylitol by the integration of multiple copies of xylose reductase gene and the deletion of Embden-Meyerhof-Parnas pathway-associated genes to enhance NADPH regeneration in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2019, 46(8): 1061-1069.
doi: 10.1007/s10295-019-02169-3
[48] Shen Y P, Liao Y L, Lu Q, et al. ATP and NADPH engineering of Escherichia coli to improve the production of 4-hydroxyphenylacetic acid using CRISPRi. Biotechnology for Biofuels, 2021, 14(1): 100-110.
doi: 10.1186/s13068-021-01954-6
[49] Lu C C, Liu Y F, Li J H, et al. Engineering of biosynthesis pathway and NADPH supply for improved L-5-methyltetrahydrofolate production by Lactococcus lactis. Journal of Microbiology and Biotechnology, 2019, 31(1): 154-162.
doi: 10.4014/jmb.1910.10069
[50] Cheng H L, Wang S Q, Bilal M, et al. Identification, characterization of two NADPH-dependent erythrose reductases in the yeast Yarrowia lipolytica and improvement of erythritol productivity using metabolic engineering. Microbial Cell Factories, 2018, 17(1): 133.
doi: 10.1186/s12934-018-0982-z
[51] Chen R B, Gao J Q, Yu W, et al. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nature Chemical Biology, 2022, 18(5): 520-529.
doi: 10.1038/s41589-022-01014-6 pmid: 35484257
[52] Hao G F, Chen H Q, Gu Z N, et al. Metabolic engineering of Mortierella alpina for enhanced arachidonic acid production through the NADPH-supplying strategy. Applied and Environmental Microbiology, 2016, 82(11): 3280-3288.
doi: 10.1128/AEM.00572-16
[53] Paramasivan K, Mutturi S. Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2017, 65(37): 8162-8170.
doi: 10.1021/acs.jafc.7b02945 pmid: 28845666
[54] Tribelli P M, Nikel P I, Oppezzo O J, et al. Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis. Microbiology, 2013, 159(Pt 2): 259-268.
doi: 10.1099/mic.0.061085-0 pmid: 23223440
[55] Ouyang L M, Holland P, Lu H Z, et al. Integrated analysis of the yeast NADPH-regulator Stb 5 reveals distinct differences in NADPH requirements and regulation in different states of yeast metabolism. FEMS Yeast Research, 2018, 18(8): foy091.
[56] Kohl A, Srinivasamurthy V, Böttcher D, et al. Co-expression of an alcohol dehydrogenase and a cyclohexanone monooxygenase for cascade reactions facilitates the regeneration of the NADPH cofactor. Enzyme and Microbial Technology, 2018, 108: 53-58.
doi: S0141-0229(17)30176-X pmid: 29108627
[57] Zhan M L, Kan B J, Dong J J, et al. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. Journal of Industrial Microbiology and Biotechnology, 2019, 46(1): 45-54.
doi: 10.1007/s10295-018-2103-8
[58] Castiglione K, Fu Y L, Polte I, et al. Asymmetric whole-cell bioreduction of (R)-carvone by recombinant Escherichia coli with in situ substrate supply and product removal. Biochemical Engineering Journal, 2017, 117(A): 102-111.
[59] Wang P C, Yang X W, Lin B X, et al. Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol. Metabolic Engineering, 2017, 44: 143-149.
doi: S1096-7176(17)30103-9 pmid: 28951189
[60] Liu H Y, Wu X X, Ma H, et al. High-level production of hydroxytyrosol in engineered Saccharomyces cerevisiae. ACS Synthetic Biology, 2022, 11(11): 3706-3713.
doi: 10.1021/acssynbio.2c00316
[61] Christodoulou D, Link H, Fuhrer T, et al. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to oxidative stress. Cell Systems, 2018, 6(5): 569-578, e7.
doi: S2405-4712(18)30149-2 pmid: 29753645
[62] Wang L P, Yu H B, Xu J Z, et al. Deciphering the crucial roles of AraC-type transcriptional regulator Cgl 2680 on NADPH metabolism and L-lysine production in Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology, 2020, 36(6): 82-97.
doi: 10.1007/s11274-020-02861-y
[63] Zhang H M, Graeff R, Chen Z, et al. Dynamic conformations of the CD38-mediated NAD cyclization captured in a single crystal. Journal of Molecular Biology, 2011, 405(4): 1070-1078.
doi: 10.1016/j.jmb.2010.11.044 pmid: 21134381
[64] Preissler J, Reeve H A, Zhu T Z, et al. Dihydrogen-driven NADPH recycling in imine reduction and P450-catalyzed oxidations mediated by an engineered O2-tolerant hydrogenase. ChemCatChem, 2020, 12(19): 4853-4861.
doi: 10.1002/cctc.v12.19
[65] Lee S H, Kodaki T, Park Y C, et al. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Journal of Biotechnology, 2012, 158(4): 184-191.
doi: 10.1016/j.jbiotec.2011.06.005
[66] Jiang H W, Chen Q, Pan J, et al. Rational engineering of formate dehydrogenase substrate/cofactor affinity for better performance in NADPH regeneration. Applied Biochemistry and Biotechnology, 2020, 192(2): 530-543.
doi: 10.1007/s12010-020-03317-7
[67] Xu G C, Zhu C, Li A T, et al. Engineering an alcohol dehydrogenase for balancing kinetics in NADPH regeneration with 1, 4-butanediol as a cosubstrate. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15706-15714.
[68] Xu J L, Zhou H S, Yu H R, et al. Computational design of highly stable and soluble alcohol dehydrogenase for NADPH regeneration. Bioresources and Bioprocessing, 2021, 8(1): 1-13.
doi: 10.1186/s40643-020-00357-z
[69] Chen K L, Li K F, Deng J, et al. Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (R)-[3, 5-bis(trifluoromethyl)phenyl]ethanol. Microbial Cell Factories, 2016, 15(1): 191-202.
doi: 10.1186/s12934-016-0585-5
[70] Bau J A, Emwas A H, Nikolaienko P, et al. Mo3+ hydride as the common origin of H2 evolution and selective NADH regeneration in molybdenum sulfide electrocatalysts. Nature Catalysis, 2022, 5(5): 397-404.
doi: 10.1038/s41929-022-00781-8
[71] Li H Z, Worley K E, Calabrese Barton S. Quantitative analysis of bioactive NAD+ regenerated by NADH electro-oxidation. ACS Catalysis, 2012, 2(12): 2572-2576.
doi: 10.1021/cs3004598
[72] Chen R, Wei Q H, Wei X, et al. Stable and efficient immobilization of bi-enzymatic NADPH cofactor recycling system under consecutive microwave irradiation. PLoS One, 2020, 15(11): e0242564.
[1] 卢南巡, 王荔巍, 刘玫秀, 张中华, 常景玲, 李志刚. 低聚磷酸盐促进cAMP发酵合成的全局转录组分析*[J]. 中国生物工程杂志, 2023, 43(4): 41-50.
[2] 卞一凡,刘姝晗,张贝萌,张玉龙,李辛桐,王鹏超. 微生物合成2-苯乙醇研究进展*[J]. 中国生物工程杂志, 2022, 42(8): 128-136.
[3] 贾男,臧国伟,李春,王颖. 辅因子在微生物细胞工厂中的代谢调控与应用*[J]. 中国生物工程杂志, 2022, 42(7): 79-89.
[4] 王露鑫,房立霞,陈雅如,李孟旭,牛小龙,宋浩,曹英秀. 解脂耶氏酵母基于木质纤维素原料生产化学品研究进展*[J]. 中国生物工程杂志, 2022, 42(12): 91-100.
[5] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[6] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[7] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[8] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[9] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[10] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[11] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[12] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.
[13] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.
[14] 赵秀丽, 周丹丹, 闫晓光, 吴昊, 财音青格乐, 李艳妮, 乔建军. 细菌小RNA的调控及在代谢工程中的应用[J]. 中国生物工程杂志, 2017, 37(6): 97-106.
[15] 于潇淳, 马世良. 米曲霉外源表达系统研究进展[J]. 中国生物工程杂志, 2016, 36(9): 94-100.