Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (2/3): 176-189    DOI: 10.13523/j.cb.2307017
综述     
基于小RNA调控工具在蓝藻合成生物学中的应用*
王瑞彬,董世瑞**()
天津商业大学生物技术与食品科学学院 天津市食品生物技术重点实验室 天津 300134
Application of Small RNA Regulatory Tools in Cyanobacteria Synthetic Biology
WANG Ruibin,DONG Shirui**()
Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
 全文: PDF(1286 KB)   HTML
摘要:

基因调控工具在蓝藻合成生物学领域的应用尤为重要,可实现基因表达调控、工程株开发以及附加经济产物的生产。小RNA调控工具是基于小RNA的靶向特异性调控原理,并与合成生物学相结合,进行靶基因特异性调控的定量、全局调控工具。它将小RNA与其靶标作为互作反应模块,并以诱导表达开关、支架序列与伴侣蛋白等作为辅助模块。这类工具已被应用于高附加经济产物合成与藻株对燃料与化学品的耐受性修饰。根据小RNA工具的不同调控特性,对近年来小RNA调控工具的种类、调控原理、辅助模块的选择与改造,以及在合成附加经济产物、提高蓝藻耐受性实验中获得的研究进展进行综述,探讨小RNA工具在应用中可能存在的问题及未来发展前景,为设计高效、精确的分子编辑工具提供参考。

关键词: 合成生物学调控基因表达小RNA工具    
Abstract:

The application of gene regulatory tools in the field of cyanobacterial synthetic biology is particularly important for controlling gene expression, engineering strain development, and the production of additional economic products. Small RNA regulatory tools, which are based on the principle of targeted specificity regulation of small RNAs, are quantitative and global regulatory tools that are combined with synthetic biology for specific regulation of target genes. These tools use small RNAs and their targets as interaction modules and use inducible expression switches, scaffold sequences, and partner proteins as ancillary modules. Such tools have been applied to the synthesis of high-value economic products and the modification of algal strains for fuel and chemical tolerance. This paper provides an overview of different types of small RNA regulatory tools, their regulatory principles, the selection and modification of ancillary modules, as well as research progress in the synthesis of additional economic products and improvement of cyanobacterial tolerance. It also discusses potential problems and future development prospects of small RNA tools in applications, providing a reference for the design of efficient and precise molecular editing tools.

Key words: Synthetic biology    Regulates gene expression    Small RNA tools
收稿日期: 2023-07-13 出版日期: 2024-04-03
ZTFLH:  Q819  
基金资助: *天津市研究生科研创新(2022SKYZ134)
通讯作者: **电子信箱:dongshirui@tjcu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王瑞彬
董世瑞

引用本文:

王瑞彬, 董世瑞. 基于小RNA调控工具在蓝藻合成生物学中的应用*[J]. 中国生物工程杂志, 2024, 44(2/3): 176-189.

WANG Ruibin, DONG Shirui. Application of Small RNA Regulatory Tools in Cyanobacteria Synthetic Biology. China Biotechnology, 2024, 44(2/3): 176-189.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2307017        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I2/3/176

图1  核糖体调节系统的调控原理
藻株 工程系统 靶点 结果 参考文献
集胞藻PCC 6803
Synechocystis sp. PCC 6803
PnrsB-taR*2/Ptrc-crR*2-(gfp) gfp报告基因 GFP信号增加13倍 [27]
集胞藻PCC 6803
Synechocystis sp. PCC 6803
Kmr-PnrsB-taRNA-T1 terminator/Pconstitutive-crR6(cyabrB2) cyabrB2全局转录调节因子基因 调节cyabrB2表达,ON/OFF值达50倍 [26]
集胞藻PCC 6803
Synechocystis sp. PCC 6803
PnrsB-taR*6/Ptrc-crR*6-(gfp) gfp报告基因 基因动态调控范围增加了78倍 [27]
表1  核糖体调控系统在蓝藻合成生物学中的应用
图2  CRISPR/Cas系统的调控机制
图3  CRISPRi系统的调控机制
类型 藻株 工程系统 靶点 结果 参考文献
CRISPR/
Cas9
聚球藻UTEX 2973
Synechococcus sp. UTEX 2973
CRISPOmyces-2 引入核酸外切酶recJ基因 提高胞外游离脂肪酸浓度约1.5倍 [45]
聚球藻PCC 7942
Synechococcus elongatus
PCC 7942
Cas9-tracrRNA-crRNA(glgC) 敲除 glgC,引入 gltAppc基因 提高琥珀酸滴度(435 μg/L),比野生型高11倍 [46]
CRISPR/
Cas12a
聚球藻PCC 11801
Synechococcus elongatus
PCC 11801
Cas12/gRNA(efe) 引入乙烯合成酶efe基因 使乙烯产量达到338.26 μmol/(g·h),琥珀酸产量达到1 044.18μmol/(g·h) [47]
CRISPR/
dCas9
聚球藻PCC 7002
Synechococcus sp. PCC 7002
dCas9-sgRNA(glnA) 干扰靶基因谷氨酰胺合成酶glnA基因 提高乳酸产量约2倍,为(0.092±0.001) mmol/(L·h) [48]
集胞藻PCC 6803
Synechocystis sp. PCC 6803
dCas9/sgRNA(slr1510) 干扰靶基因磷酸酰基转移酶plsX基因 提高脂肪醇产量至10.3 mg/g [42]
dCas9/sgRNA(gltAackAphaECndhD1ndhD2) 干扰靶基因gltAackAphaECndhD1-2 改善碳通量对丁醇的分配比例至16%,使丁醇滴度显著提高 [49]
聚球藻PCC 7942
Synechococcus elongatus
PCC 7942
dCas9/sgRNA(sdhB2) 缺氮条件下,干扰靶基因sdhB2 提高琥珀酸滴度(0.63 mg/L),比野生型提高12.5倍 [50]
鱼腥藻PCC 7120 Anabaena
sp. PCC 7120
dCas9/sgRNA(glnA) 干扰靶基因glnA 胞外铵的产量提高到200 μmol/L [51]
dCas9/sgRNA(glnA) 干扰靶基因glnA;缺氮条件下,表达adhA基因 使乙醇产量提高27% [52]
CRISPR/
dCas12a
聚球藻PCC 7942
Synechococcus elongatus
PCC 7942
dCas12a/crRNA(eyfpgfpnblAacnBcpcB2) 干扰靶基因 eyfpgfpnblAacnBcpcB2 提高了角鲨烯含量,高于对照1.1倍 [43]
聚球藻UTEX 2973
Synechococcus sp. UTEX 2973
dCas12a-gRNA(glgC) 干扰靶基因glgC 降低胞内糖原积累约80% [53]
表2  CRISPR系统在蓝藻合成生物学中的应用
图4  Hfq结构与sRNA支架-Hfq调控机制 A: 球棒结构表示酸性氨基酸,即天冬氨酸和谷氨酸。蓝色表示二级结构β折叠, 橙色区域表示Hfq蛋白核心的卷曲结构 B:质粒元件结构组成和sRNA支架-Hfq复合物 C、D:展示sRNA支架序列-Hfq的调控机制
藻株 工程系统 靶点 结果 参考文献
集胞藻PCC 6803
Synechocystis sp. PCC 6803
Pcpc560-hfq-TrbcL/PpsbAM-asRNA-MicC FabD(slr2023),FabH(slr1511), FabF(sll1069slr1332) 胞内丙二酰辅酶A含量增加41% [60]
聚球藻PCC 7942
Synechococcus elongatus PCC 7942
PnrsB-hfq/Ptrc1O-asRNA-MicC 萜类生物合成(crtEchlPthg),氨基酸生物合成(ilvGccmA),糖酵解(gpi) 促进异戊二烯产生 [61]
表3  sRNA支架-Hfq在蓝藻合成生物学中的应用
图5  核糖开关调控机制以及质粒构建
藻株 工程系统 靶点 结果 参考文献
聚球藻PCC 7942
Synechococcus elongatus PCC 7942
Kmr-Ptrc-茶碱核糖开关E-luc-rrnBT1T2 luc萤光素酶基因 萤光素酶报告基因被诱导190倍 [67]
集胞藻PCC 6803
Synechocystis sp. PCC 6803
Ptrc-茶碱核糖开关E-gfp-rrnB gfp报告基因 外源添加1 mmol/L茶碱诱导下,GFP报告基因的表达增加6倍 [70]
聚球藻PCC 7002
Synechococcus sp. PCC 7002
PmetE(维生素B12开关)-yfp;PcpcBA-PmetE(维生素B12开关)-yfp yfp黄色荧光报告基因 外源添加维生素B12抑制报告基因表达 [71]
鱼腥藻PCC 7120 Anabaena sp.
PCC 7120
PL03-茶碱核糖开关
E-gfp-TetR
gfp报告基因 外源添加2 000 μmol/L茶碱诱导下,GFP报告基因的表达增加5倍 [73]
聚球藻PCC 7942
Synechococcus elongatus PCC 7942
PconII-茶碱核糖开关
F-yfp-TetR
yfp报告基因 茶碱诱导后,样品上清液中荧光增加了约16倍 [74]
表4  核糖开关在蓝藻合成生物学中的应用
类型 作用元件 作用水平 限制条件 靶基因
CRISPR系统 sgRNA, Cas9/
Cas12a,PAM
基因组水平 需要目标序列含有PAM位点,仅通过设计crRNA难以有效调控,可能会导致细胞死亡 可同时调控多个靶基因,实现无标记筛选
CRISPRi系统 sgRNA,dCas9/
dCas12a,PAM
转录水平 需要目标序列含有PAM位点,仅通过设计crRNA难以有效调控,可能会产生致死表型 可同时调控多个靶基因,实现无标记筛选
核糖体调控系统 taRNA,crRNA 翻译水平 无限制条件,可通过设计调控序列特异性、有效调控靶点 crRNA结构有效地抑制目标基因转录本的翻译,taRNA可在受调控状态下诱导靶基因表达
sRNA支架-Hfq 靶基因结合区-Hfq结合支架,Hfq 翻译水平 可通过设计调控序列特异性、有效调控靶点 有多种调控方式,需要了解sRNA对mRNA的代谢调控网络
核糖开关 适配体,配体 翻译水平 控制翻译是否开启,调控模式较为简单,需要同其他工具共同调控基因 严格受诱导剂诱导,靶基因诱导范围广
表5  小 RNA调控工具的特点
类型 辅助元件 藻株 工程系统 靶点 结果 参考
文献
CRISPRi 核糖开关 聚球藻PCC 7002
Synechococcus sp.
PCC 7002
无水四环素系统融合启动子区调控dCas9表达 ypet报告基因 外源加入1 μg/mL aTc,Ypet荧光强度受到抑制 [6]
CRISPRi 核糖开关 鱼腥藻PCC 7120
Anabaena sp. PCC 7120
PpetE-tetR-PL03-茶碱核糖开关E-dCas9 谷氨酰胺合成酶
(glnA)
3.3倍抑制glnA表达,胞内产铵,并能够控制光合产铵的时间,诱导后分泌铵至胞外 [51]
核糖体调
控系统
核糖开关 鱼腥藻PCC 7120
Anabaena sp. PCC 7120
PpetE-tetR-PL03-taRNA/PnifB-crRNA-lacZ lacZ报告基因 实现对lacZ的二元调控 [73]
核糖体调
控系统
支架序列-
Hfq
集胞藻PCC 6803
Synechocystis sp.
PCC 6803
PnrsB-taR*2-MicF M7.4 /PtrcΔlacO-crR*2-gfp gfp报告基因 taR*2-MicF M7.4的表达量最高,比taR*2-MicF高约1.5倍,比taR*2高2.5倍,有效提高集胞藻中taR*2的基因调控能力 [59]
反义sRNA 支架序列-
Hfq,核糖
开关
聚球藻PCC 7942
Synechococcus elongatus
PCC 7942、聚球藻UTEX
2973 (Synechococcus sp.
UTEX 2973
Ptho-lacZ/cmR-Pcpc560-nanT/PN-sRNA micC-
Pcpc560-hfq-Ptrc-nanR
lacZ报告
基因
实现对靶基因的二元调控 [77]
反义sRNA 核糖开关 鱼腥藻PCC 7120
Anabaena sp. PCC 7120
PpetE-tetR/PL03-gfp/PL03-asRNA gfp报告基因 通过添加无水四环素,增加GFP荧光蛋白表达量 [76]
反义sRNA 支架序列-
Hfq,核糖
开关
集胞藻PCC 6803
Synechocystis sp.
PCC 6803
PpsbA2M-as(zwfpgipfkA)-micC-TrbcL-Ptrc-核糖开关(茶碱)-hfq-TrbcL 葡萄糖-6-磷酸脱氢酶基因(zwf)、葡萄糖-6-磷酸异构酶(pgi)基因、磷酸果糖激酶基因(pfkA) 提高MI产量至7.93 mg/L,增加对asRNA表达的控制 [75]
反义sRNA 支架序列-
Hfq,核糖
开关
集胞藻PCC 6803
Synechocystis sp.
PCC 6803
SpeR-PpsbA2M-asRNA-micC-TrbcL-Ptrc-核糖开关(茶碱)-hfq-TrbcL FabD(slr2023)、FabH(slr1511)、FabF
(sll1069slr1332)
sRNA受到严格调控 [60]
表6  小RNA调控工具之间的偶联
[1] 章真, 刘晓军, 陈夏, 等. 微藻生物技术在碳中和的应用与展望. 中国生物工程杂志, 2022, 42(S1): 160-173.
Zhang Z, Liu X J, Chen X, et al. Application and prospect of microalgae biotechnology in carbon neutralization. China Biotechnology, 2022, 42(S1): 160-173.
[2] Miao R, Jahn M, Shabestary K, et al. CRISPR interference screens reveal growth-robustness tradeoffs in Synechocystis sp. PCC 6803 across growth conditions. The Plant Cell, 2023, 35(11): 3937-3956.
doi: 10.1093/plcell/koad208 pmid: 37494719
[3] Yadav I, Rautela A, Gangwar A, et al. Geranyl diphosphate synthase (CrtE) inhibition using alendronate enhances isoprene production in recombinant Synechococcus elongatus UTEX 2973: a step towards isoprene biorefinery. Fermentation, 2023, 9(3): 217.
[4] Sakamaki Y, Ono M, Shigenari N, et al. Photosynthetic 1, 8-cineole production using cyanobacteria. Bioscience, Biotechnology, and Biochemistry, 2023, 87(5): 563-568.
doi: 10.1093/bbb/zbad012
[5] Wu Y N, Sun J H, Xu X J, et al. Engineering cyanobacteria for converting carbon dioxide into isomaltulose. Journal of Biotechnology, 2023, 364: 1-4.
doi: 10.1016/j.jbiotec.2023.01.007 pmid: 36702257
[6] Dallo T, Krishnakumar R, Kolker S D, et al. High-density guide RNA tiling and machine learning for designing CRISPR interference in Synechococcus sp. PCC 7002. ACS Synthetic Biology, 2023, 12(4): 1175-1186.
doi: 10.1021/acssynbio.2c00653
[7] Pritam P, Sarnaik A P, Wangikar P P. Metabolic engineering of Synechococcus elongatus for photoautotrophic production of mannitol. Biotechnology and Bioengineering, 2023, 120(8): 2363-2370.
doi: 10.1002/bit.28479 pmid: 37387320
[8] Toepel J, Karande R, Bühler B, et al. Photosynthesis driven continuous hydrogen production by diazotrophic cyanobacteria in high cell density capillary photobiofilm reactors. Bioresource Technology, 2023, 373: 128703.
doi: 10.1016/j.biortech.2023.128703
[9] Niederholtmeyer H, Wolfstädter B T, Savage D F, et al. Engineering cyanobacteria to synthesize and export hydrophilic products. Applied and Environmental Microbiology, 2010, 76(11): 3462-3466.
doi: 10.1128/AEM.00202-10 pmid: 20363793
[10] Pattanaik B, Lindberg P. Terpenoids and their biosynthesis in cyanobacteria. Life, 2015, 5(1): 269-293.
doi: 10.3390/life5010269
[11] Lindberg P, Park S, Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic Engineering, 2010, 12(1): 70-79.
doi: 10.1016/j.ymben.2009.10.001 pmid: 19833224
[12] 马依凡, 孙绘梨, 毛绍名, 等. 进化工程在蓝细菌生物学和生物技术研究中的应用. 中国生物工程杂志, 2023, 43(11):1-15.
Ma Y F, Sun H L, Mao S M, et al. The application of evolutionary engineering in blue bacteria biology and biotechnology research. China Biotechnology, 2023, 43(11):1-15.
[13] Kämäräinen J, Nylund M, Aro E M, et al. Comparison of ethanol tolerance between potential cyanobacterial production hosts. Journal of Biotechnology, 2018, 283: 140-145.
doi: S0168-1656(18)30574-1 pmid: 30059699
[14] Du W, Angermayr S A, Jongbloets J A, et al. Nonhierarchical flux regulation exposes the fitness burden associated with lactate production in Synechocystis sp. PCC6803. ACS Synthetic Biology, 2017, 6(3): 395-401.
doi: 10.1021/acssynbio.6b00235
[15] Huang H H, Camsund D, Lindblad P, et al. Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Research, 2010, 38(8): 2577-2593.
doi: 10.1093/nar/gkq164
[16] 董正鑫, 孙韬, 陈磊, 等. 调控工程在光合蓝细菌中的应用. 合成生物学, 2022, 3(5): 966-984.
doi: 10.12211/2096-8280.2022-012
Dong Z X, Sun T, Chen L, et al. Applications of regulatory engineering in photosynthetic cyanobacteria. Synthetic Biology Journal, 2022, 3(5): 966-984.
doi: 10.12211/2096-8280.2022-012
[17] 曾雪霞, 但玉, 毛绍名, 等. 蓝藻光驱固碳合成糖类物质的技术研究进展. 中国生物工程杂志, 2022, 42(7): 90-100.
Zeng X X, Dan Y, Mao S M, et al. Research progress on the cyanobacterial photosynthetic production of sugars utilizing carbon dioxide. China Biotechnology, 2022, 42(7): 90-100.
[18] Gaida S M, Al-Hinai M A, Indurthi D C, et al. Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Research, 2013, 41(18): 8726-8737.
doi: 10.1093/nar/gkt651 pmid: 23892399
[19] Na D, Yoo S M, Chung H, et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nature Biotechnology, 2013, 31: 170-174.
doi: 10.1038/nbt.2461
[20] Rodrigo G, Landrain T E, Jaramillo A. De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38): 15271-15276.
[21] Till P, Toepel J, Bühler B, et al. Regulatory systems for gene expression control in cyanobacteria. Applied Microbiology and Biotechnology, 2020, 104(5): 1977-1991.
doi: 10.1007/s00253-019-10344-w pmid: 31965222
[22] Isaacs F J, Dwyer D J, Ding C M, et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 2004, 22: 841-847.
doi: 10.1038/nbt986 pmid: 15208640
[23] Krishnamurthy M, Hennelly S P, Dale T, et al. Tunable riboregulator switches for post-transcriptional control of gene expression. ACS Synthetic Biology, 2015, 4(12): 1326-1334.
doi: 10.1021/acssynbio.5b00041 pmid: 26165796
[24] Hong F, Šulc P. An emergent understanding of strand displacement in RNA biology. Journal of Structural Biology, 2019, 207(3): 241-249.
doi: S1047-8477(19)30134-0 pmid: 31220588
[25] Sakai Y, Abe K, Nakashima S, et al. Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli. ACS Synthetic Biology, 2014, 3(3): 152-162.
doi: 10.1021/sb4000959 pmid: 24328142
[26] Ueno K, Sakai Y, Shono C, et al. Applying a riboregulator as a new chromosomal gene regulation tool for higher glycogen production in Synechocystis sp. PCC 6803. Applied Microbiology and Biotechnology, 2017, 101(23): 8465-8474.
doi: 10.1007/s00253-017-8570-4
[27] Sakamoto I, Abe K, Kawai S, et al. Improving the induction fold of riboregulators for cyanobacteria. RNA Biology, 2018, 15(3): 353-358.
doi: 10.1080/15476286.2017.1422470 pmid: 29303421
[28] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-E2586.
[29] Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 2011, 9: 467-477.
doi: 10.1038/nrmicro2577 pmid: 21552286
[30] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471: 602-607.
doi: 10.1038/nature09886
[31] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[32] Behler J, Vijay D, Hess W R, et al. CRISPR-based technologies for metabolic engineering in cyanobacteria. Trends in Biotechnology, 2018, 36(10): 996-1010.
doi: S0167-7799(18)30146-X pmid: 29937051
[33] Zhang X C, Wang J M, Cheng Q X, et al. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discovery, 2017, 3: 17018.
doi: 10.1038/celldisc.2017.18 pmid: 28607761
[34] Paul B, Montoya G. CRISPR-Cas12a: functional overview and applications. Biomedical Journal, 2020, 43(1): 8-17.
doi: S2319-4170(19)30505-0 pmid: 32200959
[35] Zetsche B, Gootenberg J S, Abudayyeh O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system. Cell, 2015, 163(3): 759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[36] Ungerer J, Pakrasi H B. Cpf1 is A versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Scientific Reports, 2016, 6: 39681.
doi: 10.1038/srep39681 pmid: 28000776
[37] Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.
doi: 10.1016/j.cell.2013.02.022 pmid: 23452860
[38] Zheng Y, Su T Y, Qi Q S. Microbial CRISPRi and CRISPRa systems for metabolic engineering. Biotechnology and Bioprocess Engineering, 2019, 24(4): 579-591.
doi: 10.1007/s12257-019-0107-5
[39] Wendt K E, Ungerer J, Cobb R E, et al. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial Cell Factories, 2016, 15(1): 115.
[40] Yao L, Shabestary K, Björk S M, et al. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp. PCC 6803 for enhanced industrial phenotypes. Nature Communications, 2020, 11: 1666.
doi: 10.1038/s41467-020-15491-7
[41] Yao L, Cengic I, Anfelt J, et al. Multiple gene repression in cyanobacteria using CRISPRi. ACS Synthetic Biology, 2016, 5(3): 207-212.
doi: 10.1021/acssynbio.5b00264 pmid: 26689101
[42] Kaczmarzyk D, Cengic I, Yao L, et al. Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metabolic Engineering, 2018, 45: 59-66.
doi: S1096-7176(17)30383-X pmid: 29199103
[43] Choi S Y, Woo H M. CRISPRi-dCas12a: a dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria. ACS Synthetic Biology, 2020, 9(9): 2351-2361.
doi: 10.1021/acssynbio.0c00091 pmid: 32379967
[44] Abudayyeh O O, Gootenberg J S, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353(6299): aaf5573.
[45] Racharaks R, Arnold W, Peccia J. Development of CRISPR-Cas9 knock-in tools for free fatty acid production using the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. Journal of Microbiological Methods, 2021, 189: 106315.
doi: 10.1016/j.mimet.2021.106315
[46] Li H, Shen C R, Huang C H, et al. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabolic Engineering, 2016, 38: 293-302.
doi: S1096-7176(16)30145-8 pmid: 27693320
[47] Sengupta A, Pritam P, Jaiswal D, et al. Photosynthetic co-production of succinate and ethylene in a fast-growing Cyanobacterium, Synechococcus elongatus PCC 11801. Metabolites, 2020, 10(6): 250.
[48] Gordon G C, Korosh T C, Cameron J C, et al. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metabolic Engineering, 2016, 38: 170-179.
doi: S1096-7176(16)30062-3 pmid: 27481676
[49] Shabestary K, Anfelt J, Ljungqvist E, et al. Targeted repression of essential genes to arrest growth and increase carbon partitioning and biofuel titers in cyanobacteria. ACS Synthetic Biology, 2018, 7(7): 1669-1675.
doi: 10.1021/acssynbio.8b00056 pmid: 29874914
[50] Huang C H, Shen C R, Li H, et al. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microbial Cell Factories, 2016, 15(1): 196.
[51] Higo A, Isu A, Fukaya Y, et al. Application of CRISPR interference for metabolic engineering of the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Plant and Cell Physiology, 2018, 59(1): 119-127.
doi: 10.1093/pcp/pcx166
[52] Higo A, Ehira S. Spatiotemporal gene repression system in the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. ACS Synthetic Biology, 2019, 8(4): 641-646.
doi: 10.1021/acssynbio.8b00496
[53] Knoot C J, Biswas S, Pakrasi H B. Tunable repression of key photosynthetic processes using Cas12a CRISPR interference in the fast-growing cyanobacterium Synechococcus sp. UTEX 2973. ACS Synthetic Biology, 2020, 9(1): 132-143.
doi: 10.1021/acssynbio.9b00417 pmid: 31829621
[54] Ishikawa H, Otaka H, Maki K, et al. The functional Hfq-binding module of bacterial sRNAs consists of a double or single hairpin preceded by a U-rich sequence and followed by a 3' poly(U) tail. RNA, 2012, 18(5): 1062-1074.
doi: 10.1261/rna.031575.111 pmid: 22454537
[55] Dienst D, Dühring U, Mollenkopf H J, et al. The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. Microbiology, 2008, 154(10): 3134-3143.
doi: 10.1099/mic.0.2008/020222-0
[56] Schu D J, Zhang A X, Gottesman S, et al. Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. The EMBO Journal, 2015, 34(20): 2557-2573.
doi: 10.15252/embj.201591569
[57] Otaka H, Ishikawa H, Morita T, et al. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(32): 13059-13064.
[58] Lee Y J, Moon T S. Design rules of synthetic non-coding RNAs in bacteria. Methods, 2018, 143: 58-69.
doi: S1046-2023(17)30338-9 pmid: 29309838
[59] Sakai Y, Abe K, Nakashima S, et al. Scaffold-fused riboregulators for enhanced gene activation in Synechocystis sp. PCC 6803. MicrobiologyOpen, 2015, 4(4): 533-540.
doi: 10.1002/mbo3.257 pmid: 25865486
[60] Sun T, Li S B, Song X Y, et al. Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 2018, 11: 26.
doi: 10.1186/s13068-018-1032-0
[61] Rodrigues J S, Bourgade B, Galle K R, et al. Mapping competitive pathways to terpenoid biosynthesis in Synechocystis sp. PCC 6803 using an antisense RNA synthetic tool. Microbial Cell Factories, 2023, 22(1): 35.
[62] Flemmich L, Heel S, Moreno S, et al. A natural riboswitch scaffold with self-methylation activity. Nature Communications, 2021, 12: 3877.
doi: 10.1038/s41467-021-24193-7 pmid: 34162884
[63] Liu Y F, Yuan H L, Ding D Q, et al. Establishment of a biosensor-based high-throughput screening platform for tryptophan overproduction. ACS Synthetic Biology, 2021, 10(6): 1373-1383.
doi: 10.1021/acssynbio.0c00647 pmid: 34081459
[64] Wang X, Fang C, Wang Y F, et al. Systematic comparison and rational design of theophylline riboswitches for effective gene repression. Microbiology Spectrum, 2023, 11(1): e0275222.
[65] Kelvin D, Suess B. Tapping the potential of synthetic riboswitches: reviewing the versatility of the tetracycline aptamer. RNA Biology, 2023, 20(1): 457-468.
doi: 10.1080/15476286.2023.2234732 pmid: 37459466
[66] Topp S, Reynoso C M K, Seeliger J C, et al. Synthetic riboswitches that induce gene expression in diverse bacterial species. Applied and Environmental Microbiology, 2010, 76(23): 7881-7884.
doi: 10.1128/AEM.01537-10 pmid: 20935124
[67] Nakahira Y, Ogawa A, Asano H, et al. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant and Cell Physiology, 2013, 54(10): 1724-1735.
doi: 10.1093/pcp/pct115 pmid: 23969558
[68] Ma A T, Schmidt C M, Golden J W. Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Applied and Environmental Microbiology, 2014, 80(21): 6704-6713.
doi: 10.1128/AEM.01697-14 pmid: 25149516
[69] Ohbayashi R, Akai H, Yoshikawa H, et al. A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. The Journal of General and Applied Microbiology, 2016, 62(3): 154-159.
doi: 10.2323/jgam.2016.02.002
[70] Huang H H, Lindblad P. Wide-dynamic-range promoters engineered for cyanobacteria. Journal of Biological Engineering, 2013, 7(1): 10.
[71] Pérez A A, Liu Z F, Rodionov D A, et al. Complementation of cobalamin auxotrophy in Synechococcus sp. strain PCC 7002 and validation of a putative cobalamin riboswitch in vivo. Journal of Bacteriology, 2016, 198(19): 2743-2752.
doi: 10.1128/JB.00475-16 pmid: 27457714
[72] Klähn S, Bolay P, Wright P R, et al. A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria. Nucleic Acids Research, 2018, 46(19): 10082-10094.
doi: 10.1093/nar/gky709 pmid: 30085248
[73] Higo A, Isu A, Fukaya Y, et al. Spatio-temporal gene induction systems in the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Plant and Cell Physiology, 2018, 59(1): 82-89.
doi: 10.1093/pcp/pcx163
[74] Datta D, Weiss E L, Wangpraseurt D, et al. Phenotypically complex living materials containing engineered cyanobacteria. Nature Communications, 2023, 14: 4742.
doi: 10.1038/s41467-023-40265-2 pmid: 37550278
[75] Wang X S, Chen L, Liu J, et al. Light-driven biosynthesis of myo-inositol directly from CO2 in Synechocystis sp. PCC 6803. Frontiers in Microbiology, 2020, 11: 566117.
doi: 10.3389/fmicb.2020.566117
[76] Higo A, Isu A, Fukaya Y, et al. Designing synthetic flexible gene regulation networks using RNA devices in cyanobacteria. ACS Synthetic Biology, 2017, 6(1): 55-61.
doi: 10.1021/acssynbio.6b00201 pmid: 27636301
[77] Sun X Y, Li S B, Zhang F F, et al. Development of a N-acetylneuraminic acid-based sensing and responding switch for orthogonal gene regulation in cyanobacterial Synechococcus strains. ACS Synthetic Biology, 2021, 10(8): 1920-1930.
doi: 10.1021/acssynbio.1c00139
[1] 许丽, 杨若南, 王玥, 施慧琳, 李祯祺, 靳晨琦, 李伟, 徐萍. 生命健康科技领域发展态势*[J]. 中国生物工程杂志, 2024, 44(1): 32-40.
[2] 李玉娟, 傅雄飞, 张先恩. 合成生物学发展脉络概述[J]. 中国生物工程杂志, 2024, 44(1): 52-60.
[3] 徐显皓, 刘龙, 陈坚. 合成生物学与未来食品*[J]. 中国生物工程杂志, 2024, 44(1): 61-71.
[4] 洪霞, 田开仁, 乔建军, 李艳妮. 基因编码型生物传感器在微生物细胞工厂中的应用进展*[J]. 中国生物工程杂志, 2023, 43(9): 62-76.
[5] 左锟澜, 邹诗施, 吴宗震, 国原源, 徐雁龙, 刘欢. 病原体相关合成生物学的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(9): 120-130.
[6] 李佳文, 范雨萱, 李福利, 张朝辉, 王士安. 基于油质蛋白oleosin鉴定短序列脂滴定位信号*[J]. 中国生物工程杂志, 2023, 43(7): 36-43.
[7] 付萌萌, 苏丹丹, 左锟澜, 吴宗震, 李思思, 徐雁龙, 刘欢. 人体免疫相关的合成生物学生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(6): 125-132.
[8] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[9] 刘亭亭, 张平, 张悦. 光控表达系统在合成生物学中的调控作用*[J]. 中国生物工程杂志, 2023, 43(4): 92-100.
[10] 宁峻涛, 邹诗施, 左锟澜, 吴宗震, 李晶, 徐雁龙, 刘欢. 合成生物活性物质的生物安全风险和应对策略研究*[J]. 中国生物工程杂志, 2023, 43(2/3): 180-189.
[11] 杨洋, 姚明东, 王颖, 肖文海. 酵母合成2'-岩藻糖基乳糖的研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 127-138.
[12] 曾雪霞,但玉,毛绍名,孙佳慧,栾国栋,吕雪峰. 蓝藻光驱固碳合成糖类物质的技术研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 90-100.
[13] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[14] 张大璐,葛奇,冯一博,陈为刚. DNA数据存储的科研概况国际对比与分析[J]. 中国生物工程杂志, 2022, 42(6): 116-129.
[15] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.