Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (11): 43-55    DOI: 10.13523/j.cb.2305026
综述     
不同表达系统的治疗性纳米抗体研究进展
孙白荷1,2,吴悦1,2,赵芮3,楼雨馨2,李婉婷2,李延飞2,*(),马琳琳2,*()
1 上海理工大学健康科学与工程学院 上海 200093
2 上海健康医学院医学技术学院 上海 201318
3 上海市东海老年护理医院 上海 201303
Research Progress of Therapeutic Nanobodies with Different Expression Systems
SUN Bai-he1,2,WU Yue1,2,ZHAO Rui3,LOU Yu-xin2,LI Wan-ting2,LI Yan-fei2,*(),MA Lin-lin2,*()
1 School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
2 School of Medical Technology,Shanghai University of Medicine & Health Sciences,Shanghai 201318,China
3 Shanghai Donghai Geriatric Nursing Hospital,Shanghai 201303,China
 全文: PDF(996 KB)   HTML
摘要:

从骆驼科动物血清中提取的纳米抗体,由于其具有不同于传统单克隆抗体的结构和较小的尺寸,以及高特异性、高理化稳定性和组织渗透性等特征,因此显示出巨大的应用潜力,被认为是生物医学发展中有前景的治疗性蛋白。利用微生物生产表达纳米抗体无须翻译后修饰,可实现大规模生产,且显著降低生产成本。目前常规生产纳米抗体的表达系统主要为大肠杆菌、毕赤酵母和哺乳动物细胞系,此外还有真菌、植物细胞、昆虫细胞及乳酸杆菌等表达系统。详细介绍了不同表达系统的特点、优势及应用,并总结了各个系统亟须解决的问题,同时概述了治疗性纳米抗体药物的生产、研发情况及临床疾病治疗应用,以期为选择合适的表达系统,用于治疗性纳米抗体的生产及临床治疗提供参考依据。

关键词: 纳米抗体异源表达抗体药物表达系统重组蛋白    
Abstract:

The nanobodies existing in the sera of camels and sharks have different structural characteristics and molecular weight from traditional monoclonal antibodies, as well as such characteristics as high specificity, high physicochemical stability and tissue permeability, which show great application potential and are considered to be promising therapeutic proteins in the development of biomedicine. Microorganisms are used to produce expression nanobodies without post-translational modification, which can be produced in large quantities and significantly reduce production costs. At present, the conventional expression systems for producing nanobodies are mainly Escherichia coli, Pichia pastoris, and mammalian cell lines, as well as fungi, plant cells, insect cells and lactobacillus expression systems. E. coli has the advantages of fast growth, high yield, easy culture and cost effectiveness. Pichia pastoris has high expression efficiency, can be cultured in high density, and uses methanol as the only carbon source to reduce pollution. Mammalian cells can adapt to serum-free suspension culture. On this basis, the research progress of characteristics, advantages and applications of different expression systems is reviewed, the urgent problems of each system are analyzed, and the production, research and development of therapeutic nanobody drugs and clinical disease treatment applications are summarized, in order to provide reference for the selection of appropriate expression systems for the production of therapeutic nanobodies and their applications in clinical treatment.

Key words: Nanobody    Heterologous expression    Antibody drug    Expression system    Recombinant protein
收稿日期: 2023-05-16 出版日期: 2023-12-01
ZTFLH:  Q51  
通讯作者: *李延飞,马琳琳     E-mail: mall@sumhs.edu.cn;liyf@sumhs.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙白荷
吴悦
赵芮
楼雨馨
李婉婷
李延飞
马琳琳

引用本文:

孙白荷, 吴悦, 赵芮, 楼雨馨, 李婉婷, 李延飞, 马琳琳. 不同表达系统的治疗性纳米抗体研究进展[J]. 中国生物工程杂志, 2023, 43(11): 43-55.

SUN Bai-he, WU Yue, ZHAO Rui, LOU Yu-xin, LI Wan-ting, LI Yan-fei, MA Lin-lin. Research Progress of Therapeutic Nanobodies with Different Expression Systems. China Biotechnology, 2023, 43(11): 43-55.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2305026        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I11/43

图1  传统抗体与骆驼重链抗体的结构
图2  利用噬菌体展示库的不同系统纳米抗体生产方案
菌株 药物名称 疾病名称 靶点 研究阶段 参考文献
TG1菌株 Caplacizumab
(ALX-0081)
获得性血栓血小板减少性紫癜 vWF 已上市 [41]
TG1菌株 KN044 局部晚期/转移性实体瘤 CTLA-4 I期临床
( NCT04126590)
[42]
TG1菌株 TAS266 实体瘤 DR5 I期临床停止
( NCT01529307)
[43]
TG1菌株 7D12-5GS-6H4 肿瘤 Vγ9Vδ2-T cells/EGFR 临床前 [44]
BL21-CodonPlus
(DE3)-RIL
11A4-ABD-AF 实体瘤 HER2 临床前 [45]
TG1 2.17-mALB 黑色素瘤 LepR 临床前 [46]
BL21(DE3) uPA-nanobodies 乳腺癌、前列腺癌和胶质母细胞瘤、
结肠癌、肾细胞癌、肝细胞癌
和胰腺癌
uPA 临床前 [47]
BL21(DE3) S7 ADC 实体瘤 EGFR 临床前 [48]
BL21(DE3) Ozoralizumab 类风湿性关节炎 TNF-α/HSA 已上市 [13]
BL21(DE3) RR2-H-RR4-Lip 乳腺癌 HER2表位1/
HER2表位2
临床前 [49]
BL21 MaAbNA 乳腺癌 EGFR1/ HER2 临床前 [50]
Rosetta-gami 2
(DE3)pLacI
ABA 艰难梭状芽孢杆菌感染 TcdA/TcdB 临床前 [51]
WK6菌株 TROS 类风湿性关节炎、克罗恩病 TNF/TNFR1 临床前 [52]
WK6菌株 NbF12-10 蝎子毒素 AahⅠ型毒素/
AahⅡ型毒素
临床前 [53]
Rosetta-gami RTA-VHH-RTB-VHHs 蓖麻毒素 RTA/RTB 临床前 [54]
表1  大肠杆菌表达的治疗性纳米抗体
酵母细胞 药物名称 疾病名称 靶点 研究阶段 参考文献
Pichia pastoris Vobarilizumab
(ALX-0061)
类风湿性关节炎 IL-6R/HSA Ⅱb期临床( NCT02287922) [65]
Pichia pastoris Nb11-59 COVID-19 SARS CoV2RBD/ACE2 临床前 [76]
Pichia pastoris mutS PDI V56B2 炎症性肠病 TNF-ɑ/ⅠL-23 临床前 [77]
S. cerevisiae V565 克罗恩病 TNF-ɑ Ⅱ期临床( NCT0297612) [77]
Pichia pastoris Vobarilizumab
(ALX-0061)
系统性红斑狼疮 IL-6R Ⅱ期临床( NCT02437890) [65]
Pichia pastoris Rab-E8/H7 狂犬病 狂犬病毒 临床前 [78]
Pichia pastoris X-33 ALX-0171 呼吸道感染 RSV Ⅱ期临床停止( NCT03418571) [67]
S. cerevisiae VHH batch 203027
(ARP1)
儿童腹泻 RV Ⅱ期临床 [79]
S. cerevisiae APR3-APR1 腹泻 RV 临床前 [80]
Pichia pastoris anti-TNF-VHH-Fc
(NbAahI22)
艰难梭菌感染
类风湿性关节炎
蝎子毒素
BoNT
TNF-ɑ
AahI’
临床前
临床前
临床前
[61]
[81]
[82]
Pichia pastoris Everestmab 2型糖尿病 GLP1/GLP1R 临床前 [83]
Y. lipolytica - - African trypanosomes 临床前 [84]
Saccharomyces cerevisiae anti-flagellin VHHs 铜绿假单胞菌感染 Flagellin 临床前 [85]
表2  酵母表达的治疗性纳米抗体
细胞系 药物名称 疾病名称 靶点 研究阶段 参考文献
HEK293T细胞 ALX-0651 癌症 CXCR4 I期临床停止( NCT01374503) [93]
HEK293F细胞 SNB02 发热伴血小板减少
综合征
SFTSV病毒 临床前 [94]
HEK293F细胞 m17/m35 呼吸道肺炎 RSV F蛋白 临床前 [95]
HEK293T细胞 Nb91-Nb3-hFc COVID-19 SARS-CoV-2-RBD 临床前 [96]
HEK293T细胞 - 阿尔茨海默病 human Aβ 临床前 [97]
原代T细胞 CAR T 实体瘤 TAA 临床前 [98]
CHO Envafolimab(KN035) 实体瘤 PD-1/PD-L1 已上市 -
CHO Carvykti(LCAR-B38M) 多发性难发性骨髓瘤 BCMA 已上市 -
CHO IBI323 晚期恶性肿瘤 PD-L1/LAG-3 Ⅰ期临床 [99]
CHO IBI322 实体瘤 PD-L1/CD 47 Ⅱ期临床 [100]
植物 MucoRice-TNF-VHH 小鼠关节炎 TNF 临床前 [101]
乳酸杆菌 - 轮状病毒诱发腹泻 RV 临床前 [102]
芽孢杆菌 - - IZUMO1PFF 临床前 [103]
芽孢杆菌 - 实体瘤 EGFR 临床前 [104]
芽孢杆菌 - - Human chorionic
gonadotropin
临床前 [105]
表3  哺乳动物细胞系及其他系统表达的治疗性纳米抗体
[1] Tillib S V. “Camel nanoantibody” is an efficient tool for research, diagnostics and therapy. Molecular Biology, 2011, 45(1): 66-73.
doi: 10.1134/S0026893311010134
[2] Huang L, Gainkam L O T, Caveliers V, et al. SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Molecular Imaging and Biology, 2008, 10(3): 167-175.
doi: 10.1007/s11307-008-0133-8
[3] Kenanova V, Wu A M. Tailoring antibodies for radionuclide delivery. Expert Opinion on Drug Delivery, 2006, 3(1): 53-70.
pmid: 16370940
[4] Mordenti J. Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and fab antibodies in Rhesus monkeys following intravitreal administration. Toxicologic Pathology, 1999, 27(5): 536-544.
doi: 10.1177/019262339902700507 pmid: 10528633
[5] Van de Wiele C, Revets H, Mertens N. Radioimmunoimaging. Advances and prospects. Nuclear Medicine and Molecular Imaging, 2004, 48(4): 317-325.
doi: 10.1007/s13139-014-0294-0
[6] Vaneycken I, D’huyvetter M, Hernot S, et al. Immuno-imaging using nanobodies. Current Opinion in Biotechnology, 2011, 22(6): 877-881.
doi: 10.1016/j.copbio.2011.06.009 pmid: 21726996
[7] Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature, 1993, 363(6428): 446-448.
doi: 10.1038/363446a0
[8] Muyldermans S. Nanobodies: natural single-domain antibodies. Annual Review of Biochemistry, 2013, 82: 775-797.
doi: 10.1146/annurev-biochem-063011-092449 pmid: 23495938
[9] Bathula N V, Bommadevara H, Hayes J M. Nanobodies: the future of antibody-based immune therapeutics. Cancer Biotherapy & Radiopharmaceuticals, 2021, 36(2): 109-122.
[10] Farajpour Z, Rahbarizadeh F, Kazemi B, et al. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment. Biochemical and Biophysical Research Communications, 2014, 446(1): 132-136.
doi: 10.1016/j.bbrc.2014.02.069 pmid: 24569074
[11] Li T, Bourgeois J P, Celli S, et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2012, 26(10): 3969-3979.
doi: 10.1096/fsb2.v26.10
[12] Ren J, Zhang C, Ji F L, et al. Characterization and comparison of two peptide-tag specific nanobodies for immunoaffinity chromatography. Journal of Chromatography A, 2020, 1624: 461227.
doi: 10.1016/j.chroma.2020.461227
[13] Coppieters K, Dreier T, Silence K, et al. Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis and Rheumatism, 2006, 54(6): 1856-1866.
pmid: 16736523
[14] 原博, 王杰文, 康广博, 等. 双特异性纳米抗体的研究进展及其应用. 中国生物工程杂志, 2021, 41(S1): 78-88.
Yuan B, Wang J W, Kang G B, et al. Research progress and application of bispecific nanobody. China Biotechnology, 2021, 41(S1): 78-88.
[15] van der Linden R H, Frenken L G, de Geus B, et al. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochimica et Biophysica Acta, 1999, 1431(1): 37-46.
doi: 10.1016/s0167-4838(99)00030-8 pmid: 10209277
[16] Rossotti M A, Bélanger K, Henry K A, et al. Immunogenicity and humanization of single-domain antibodies. The FEBS Journal, 2022, 289(14): 4304-4327.
doi: 10.1111/febs.v289.14
[17] Akhila M V, Ken S N, Narwani Tarun J, et al. Discrete analysis of camelid variable domains: sequences, structures, and in-silico structure prediction. PeerJ, 2020, 8: e8408.
doi: 10.7717/peerj.8408
[18] Rathore A, Weiskopf A, Reason A. Defining critical quality attributes for monoclonal antibody therapeutic products. Biopharm International, 2014, 27(7): 34-36, 38.
[19] Cymer F, Beck H, Rohde A, et al. Therapeutic monoclonal antibody N-glycosylation: structure, function and therapeutic potential. Biologicals, 2018, 52: 1-11.
doi: 10.1016/j.biologicals.2017.11.001
[20] Habib I, Smolarek D, Hattab C, et al. VHH (nanobody) directed against human glycophorin A: a tool for autologous red cell agglutination assays. Analytical Biochemistry, 2013, 438(1): 82-89.
doi: 10.1016/j.ab.2013.03.020
[21] Fleetwood F, Devoogdt N, Pellis M, et al. Surface display of a single-domain antibody library on Gram-positive bacteria. Cellular and Molecular Life Sciences, 2013, 70(6): 1081-1093.
doi: 10.1007/s00018-012-1179-y pmid: 23064703
[22] Ryckaert S, Pardon E, Steyaert J, et al. Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of Pichia pastoris. Journal of Biotechnology, 2010, 145(2): 93-98.
doi: 10.1016/j.jbiotec.2009.10.010 pmid: 19861136
[23] Arbabi-Ghahroudi M, Tanha J, MacKenzie R. Prokaryotic expression of antibodies. Cancer and Metastasis Reviews, 2005, 24(4): 501-519.
doi: 10.1007/s10555-005-6193-1 pmid: 16408159
[24] Ventola C L. Progress in nanomedicine: approved and investigational nanodrugs. P & T: a Peer-Reviewed Journal for Formulary Management, 2017, 42(12): 742-755.
[25] Dmitriev O Y, Svetlana L, Serge M. Nanobodies as probes for protein dynamics in vitro and in cells. The Journal of Biological Chemistry, 2016, 291(8): 3767-3775.
doi: 10.1074/jbc.R115.679811
[26] Frenken L G J, van der Linden R H J, Hermans P W J J, et al. Isolation of antigen specific Llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. Journal of Biotechnology, 2000, 78(1): 11-21.
doi: 10.1016/s0168-1656(99)00228-x pmid: 10702907
[27] Liu Y K, Huang H. Expression of single-domain antibody in different systems. Applied Microbiology and Biotechnology, 2018, 102(2): 539-551.
doi: 10.1007/s00253-017-8644-3 pmid: 29177623
[28] Baeshen M N, Al-Hejin A M, Bora R S, et al. Production of biopharmaceuticals in E. coli: current scenario and future perspectives. Journal of Microbiology and Biotechnology, 2015, 25(7): 953-962.
doi: 10.4014/jmb.1412.12079
[29] Chao S Y, Liu Y H, Ding N, et al. Highly expressed soluble recombinant anti-GFP VHHs in Escherichia coli via optimized signal peptides, strains, and inducers. Frontiers in Molecular Biosciences, 2022, 9: 848829.
doi: 10.3389/fmolb.2022.848829
[30] Bakherad H, Gargari S L M, Rasooli I, et al. In vivo neutralization of botulinum neurotoxins serotype E with heavy-chain camelid antibodies (VHH). Molecular Biotechnology, 2013, 55(2): 159-167.
doi: 10.1007/s12033-013-9669-1 pmid: 23666874
[31] Shriver-Lake L C, Goldman E R, Zabetakis D, et al. Improved production of single domain antibodies with two disulfide bonds by co-expression of chaperone proteins in the Escherichia coli periplasm. Journal of Immunological Methods, 2017, 443: 64-67.
doi: S0022-1759(16)30321-0 pmid: 28131818
[32] Lao Z T, Li S Q, Liang J H, et al. Production and characterization of GPC3-N protein and its nanobody. Protein Expression and Purification, 2022, 195-196: 106094.
[33] Manta B, Boyd D, Berkmen M. Disulfide bond formation in the periplasm of Escherichia coli. EcoSal Plus, 2019, 8(2): ESP-0012-2018.
[34] de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microbial Cell Factories, 2009, 8: 26.
doi: 10.1186/1475-2859-8-26 pmid: 19442264
[35] Cornelis P. Expressing genes in different Escherichia coli compartments. Current Opinion in Biotechnology, 2000, 11(5): 450-454.
pmid: 11024362
[36] Shokri A, Sandén A, Larsson G. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Applied Microbiology and Biotechnology, 2003, 60(6): 654-664.
pmid: 12664143
[37] Duggan S. Caplacizumab: first global approval. Drugs, 2018, 78(15): 1639-1642.
doi: 10.1007/s40265-018-0989-0 pmid: 30298461
[38] Takeuchi T, Kawanishi M, Nakanishi M, et al. Phase II/III results of a trial of anti-tumor necrosis factor multivalent NANOBODY compound ozoralizumab in patients with rheumatoid arthritis. Arthritis & Rheumatology, 2022, 74(11): 1776-1785.
[39] Luo D, Wen C X, Zhao R C, et al. High level expression and purification of recombinant proteins from Escherichia coli with AK-TAG. PLoS One, 2016, 11(5): e0156106.
doi: 10.1371/journal.pone.0156106
[40] Mamat U, Wilke K, Bramhill D, et al. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microbial Cell Factories, 2015, 14: 57.
doi: 10.1186/s12934-015-0241-5 pmid: 25890161
[41] Ulrichts H, Silence K, Schoolmeester A, et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood, 2011, 118(3): 757-765.
doi: 10.1182/blood-2010-11-317859 pmid: 21576702
[42] Wan R R, Liu A Q, Hou X Q, et al. Screening and antitumor effect of an anti-CTLA-4 nanobody. Oncology Reports, 2018, 39(2): 511-518.
[43] Papadopoulos K P, Isaacs R, Bilic S, et al. Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic Nanobody® targeting the DR5 receptor. Cancer Chemotherapy and Pharmacology, 2015, 75(5): 887-895.
doi: 10.1007/s00280-015-2712-0 pmid: 25721064
[44] de Bruin R C G, Veluchamy J P, Lougheed S M, et al. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. Oncoimmunology, 2017, 7(1): e1375641.
doi: 10.1080/2162402X.2017.1375641
[45] Xenaki K T, Dorrestijn B, Muns J A, et al. Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics, 2021, 11(11): 5525-5538.
doi: 10.7150/thno.57510 pmid: 33859761
[46] Lennart Z, Annick V, Dominiek C, et al. Selection of non-competitive leptin antagonists using a random nanobody-based approach. The Biochemical Journal, 2012, 441(1): 425-34.
doi: 10.1042/BJ20110438
[47] Kaczmarek J Z, Skottrup P D. Selection and characterization of camelid nanobodies towards urokinase-type plasminogen activator. Molecular Immunology, 2015, 65(2): 384-390.
doi: 10.1016/j.molimm.2015.02.011 pmid: 25749705
[48] Fan J S, Zhuang X L, Yang X Y, et al. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduction and Targeted Therapy, 2021, 6: 320.
doi: 10.1038/s41392-021-00666-5 pmid: 34475375
[49] Nikkhoi S K, Rahbarizadeh F, Ranjbar S, et al. Liposomal nanoparticle armed with bivalent bispecific single-domain antibodies, novel weapon in HER2 positive cancerous cell lines targeting. Molecular Immunology, 2018, 96: 98-109.
doi: S0161-5890(18)30017-8 pmid: 29549861
[50] Ding L, Tian C P, Feng S, et al. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. Theranostics, 2015, 5(4): 378-398.
doi: 10.7150/thno.10084 pmid: 25699098
[51] Yang Z Y, Schmidt D, Liu W L, et al. A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. The Journal of Infectious Diseases, 2014, 210(6): 964-972.
doi: 10.1093/infdis/jiu196
[52] Steeland S, Puimège L, Vandenbroucke R E, et al. Generation and characterization of small single domain antibodies inhibiting human tumor necrosis factor receptor 1. The Journal of Biological Chemistry, 2015, 290(7): 4022-4037.
doi: 10.1074/jbc.M114.617787
[53] Hmila I, Saerens D, Ben Abderrazek R, et al. A bispecific nanobody to provide full protection against lethal scorpion envenoming. The FASEB Journal, 2010, 24(9): 3479-3489.
doi: 10.1096/fsb2.v24.9
[54] Cristina H, Tremblay Jacqueline M, Shoemaker Charles B, et al. Mechanisms of ricin toxin neutralization revealed through engineered homodimeric and heterodimeric camelid antibodies. The Journal of Biological Chemistry, 2015, 290(46): 27880-27889.
doi: 10.1074/jbc.M115.658070
[55] Yin J C, Li G X, Ren X F, et al. Select what You need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Journal of Biotechnology, 2007, 127(3): 335-347.
pmid: 16959350
[56] Mattanovich D, Branduardi P, Dato L, et al. Recombinant protein production in yeasts. Methods in Molecular Biology, 2012, 824: 329-358.
doi: 10.1007/978-1-61779-433-9_17 pmid: 22160907
[57] Tyo K E J, Liu Z H, Magnusson Y, et al. Impact of protein uptake and degradation on recombinant protein secretion in yeast. Applied Microbiology and Biotechnology, 2014, 98(16): 7149-7159.
doi: 10.1007/s00253-014-5783-7 pmid: 24816620
[58] Cereghino G P L, Cregg J M. Applications of yeast in biotechnology: protein production and genetic analysis. Current Opinion in Biotechnology, 1999, 10(5): 422-427.
pmid: 10508632
[59] Rachel D, Hearn Milton T W. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition: JMR, 2005, 18(2): 119-138.
doi: 10.1002/(ISSN)1099-1352
[60] Gerngross T U. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nature Biotechnology, 2004, 22(11): 1409-1414.
pmid: 15529166
[61] Roghayyeh B, Mousavi G S L, Masoumeh R, et al. Camelid-derived heavy-chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris. Biotechnology and Applied Biochemistry, 2016, 63(2): 200-205.
doi: 10.1002/bab.1226 pmid: 24673401
[62] Shahrbanoo P, Latif M G S, Masoumeh R, et al. Efficient production of nanobodies against urease activity of Helicobacter pylori in Pichia pastoris. Turkish Journal of Medical Sciences, 2017, 47(2): 695-701.
doi: 10.3906/sag-1509-121 pmid: 28425268
[63] Emberson L M, Trivett A J, Blower P J, et al. Expression of an anti-CD 33 single-chain antibody by Pichia pastoris. Journal of Immunological Methods, 2005, 305(2): 135-151.
pmid: 16139294
[64] Baghban R, Farajnia S, Ghasemi Y, et al. New developments in Pichia pastoris expression system, review and update. Current Pharmaceutical Biotechnology, 2018, 19(6): 451-467.
doi: 10.2174/1389201019666180718093037
[65] van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Research & Therapy, 2015, 17(1): 135.
[66] Holz J B, Sargentini L, Bruyn S, et al. OP0043 twenty-four weeks of treatment with a novel anti-IL-6 receptor nanobody® (ALX-0061) resulted in 84% ACR20 improvement and 58% DAS28 remission in a phase i/ii study in RA. Annals of the Rheumatic Diseases, 2014, 72: A64-A64.
doi: 10.1136/annrheumdis-2013-eular.23
[67] Detalle L, Stohr T, Palomo C, et al. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrobial Agents and Chemotherapy, 2016, 60(1): 6-13.
doi: 10.1128/AAC.01802-15 pmid: 26438495
[68] Ahmad Parray H, Shukla S, Perween R, et al. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Applied Microbiology and Biotechnology, 2021, 105(16): 6315-6332.
doi: 10.1007/s00253-021-11488-4
[69] Liu S, Li G H, Ding L, et al. Evaluation of SARS-CoV-2-neutralizing nanobody using virus receptor binding domain-administered model mice. Research, 2022, 2022: 9864089.
[70] Wan Y, Gai J, Zhu M, et al. Phase I safety and efficacy evaluation of the first-in-class inhalable anti-IL-4Rα single domain antibody, A33//Late Breaking Advances in Asthma and Immunology. San Francisco :American Thoracic Society, 2023: A1379-A1379.
[71] Mochizuki S, Hamato N, Hirose M, et al. Expression and characterization of recombinant human antithrombin III in Pichia pastoris. Protein Expression and Purification, 2001, 23(1): 55-65.
pmid: 11570846
[72] Gemmill T R, Trimble R B. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochimica et Biophysica Acta (BBA) - General Subjects, 1999, 1426(2): 227-237.
doi: 10.1016/S0304-4165(98)00126-3
[73] Dean N. Asparagine-linked glycosylation in the yeast Golgi. Biochimica et Biophysica Acta (BBA) - General Subjects, 1999, 1426(2): 309-322.
doi: 10.1016/S0304-4165(98)00132-9
[74] Wildt S, Gerngross T U. The humanization of N-glycosylation pathways in yeast. Nature Reviews Microbiology, 2005, 3(2): 119-128.
doi: 10.1038/nrmicro1087
[75] Parsaie Nasab F, Aebi M, Bernhard G, et al. A combined system for engineering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2013, 79(3): 997-1007.
doi: 10.1128/AEM.02817-12
[76] Gai J W, Ma L L, Li G H, et al. A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential. MedComm, 2021, 2(1): 101-113.
doi: 10.1002/mco2.60 pmid: 33821254
[77] Roberts K J, Cubitt M F, Carlton T M, et al. Preclinical development of a bispecific TNFα/IL-23 neutralising domain antibody as a novel oral treatment for inflammatory bowel disease. Scientific Reports, 2021, 11: 19422.
doi: 10.1038/s41598-021-97236-0 pmid: 34593832
[78] Terryn S, Francart A, Lamoral S, et al. Protective effect of different anti-rabies virus VHH constructs against rabies disease in mice. PLoS One, 2014, 9(10): e109367.
doi: 10.1371/journal.pone.0109367
[79] Günaydın G, Yu S Z, Gräslund T, et al. Fusion of the mouse IgG 1 Fc domain to the VHH fragment (ARP1) enhances protection in a mouse model of rotavirus. Scientific Reports, 2016, 6: 30171.
doi: 10.1038/srep30171 pmid: 27439689
[80] Pant N, Marcotte H, Hermans P, et al. Lactobacilli producing bispecific llama-derived anti-rotavirus proteins in vivo for rotavirus-induced diarrhea. Future Microbiology, 2011, 6(5): 583-593.
doi: 10.2217/fmb.11.32
[81] Ji X M, Lu W G, Zhou H T, et al. Covalently dimerized Camelidae antihuman TNFa single-domain antibodies expressed in yeast Pichia pastoris show superior neutralizing activity. Applied Microbiology and Biotechnology, 2013, 97(19): 8547-8558.
doi: 10.1007/s00253-012-4639-2
[82] Ezzine A, M’Hirsi el Adab S, Bouhaouala-Zahar B, et al. Efficient expression of the anti-AahI’ scorpion toxin nanobody under a new functional form in a Pichia pastoris system. Biotechnology and Applied Biochemistry, 2012, 59(1): 15-21.
doi: 10.1002/bab.67 pmid: 22332740
[83] Pan H C, Su Y N, Xie Y N, et al. Everestmab, a novel long-acting GLP-1/anti GLP-1R nanobody fusion protein, exerts potent anti-diabetic effects. Artificial Cells, Nanomedicine, and Biotechnology, 2020, 48(1): 854-866.
doi: 10.1080/21691401.2020.1770268
[84] Hofmeyer T, Bulani S I, Grzeschik J, et al. Protein production in Yarrowia lipolytica via fusion to the secreted lipase Lip2p. Molecular Biotechnology, 2014, 56(1): 79-90.
doi: 10.1007/s12033-013-9684-2 pmid: 23852986
[85] Adams H, Horrevoets W M, Adema S M, et al. Inhibition of biofilm formation by Camelid single-domain antibodies against the flagellum of Pseudomonas aeruginosa. Journal of Biotechnology, 2014, 186: 66-73.
doi: 10.1016/j.jbiotec.2014.06.029
[86] Stolfa G, Smonskey M T, Boniface R, et al. CHO-omics review: the impact of current and emerging technologies on Chinese hamster ovary based bioproduction. Biotechnology Journal, 2018, 13(3): e1700227.
[87] Swiech K, Picanço-Castro V, Covas D T. Human cells: new platform for recombinant therapeutic protein production. Protein Expression and Purification, 2012, 84(1): 147-153.
doi: 10.1016/j.pep.2012.04.023 pmid: 22580292
[88] Ghaderi D, Zhang M, Hurtado-Ziola N, et al. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnology & Genetic Engineering Reviews, 2012, 28: 147-175.
[89] Durocher Y, Butler M. Expression systems for therapeutic glycoprotein production. Current Opinion in Biotechnology, 2009, 20(6): 700-707.
doi: 10.1016/j.copbio.2009.10.008 pmid: 19889531
[90] Markham A. Envafolimab: first approval. Drugs, 2022, 82(2): 235-240.
doi: 10.1007/s40265-022-01671-w pmid: 35122636
[91] Manier S, Ingegnere T, Escure G, et al. Current state and next-generation CAR-T cells in multiple myeloma. Blood Reviews, 2022, 54: 100929.
doi: 10.1016/j.blre.2022.100929
[92] Salvador J P, Vilaplana L, Marco M P. Nanobody: outstanding features for diagnostic and therapeutic applications. Analytical and Bioanalytical Chemistry, 2019, 411(9): 1703-1713.
doi: 10.1007/s00216-019-01633-4 pmid: 30734854
[93] Bobkov V, Zarca A M, Van Hout A, et al. Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochemical Pharmacology, 2018, 158: 413-424.
doi: S0006-2952(18)30435-0 pmid: 30342023
[94] Wu X L, Li Y L, Huang B L, et al. A single-domain antibody inhibits SFTSV and mitigates virus-induced pathogenesis in vivo. JCI Insight, 2020, 5(13): e136855.
doi: 10.1172/jci.insight.136855
[95] Xun G J, Song X P, Hu J E, et al. Potent human single-domain antibodies specific for a novel prefusion epitope of respiratory syncytial virus F glycoprotein. Journal of Virology, 2021, 95(18): e0048521.
doi: 10.1128/JVI.00485-21
[96] Lu Q Z, Zhang Z L, Li H X, et al. Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. Journal of Nanobiotechnology, 2021, 19(1): 33.
doi: 10.1186/s12951-021-00768-w pmid: 33514385
[97] Vandesquille M, Li T F, Po C, et al. Chemically-defined camelid antibody bioconjugate for the magnetic resonance imaging of Alzheimer’s disease. mAbs, 2017, 9(6): 1016-1027.
doi: 10.1080/19420862.2017.1342914 pmid: 28657418
[98] Bao C, Gao Q L, Li L L, et al. The application of nanobody in CAR-T therapy. Biomolecules, 2021, 11(2): 238.
doi: 10.3390/biom11020238
[99] Jiang H P, Ni H Q, Zhang P, et al. PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. Oncoimmunology, 2021, 10(1): 1943180.
doi: 10.1080/2162402X.2021.1943180
[100] Wang Y, Ni H Q, Zhou S X, et al. Tumor-selective blockade of CD 47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunology, Immunotherapy, 2021, 70(2): 365-376.
doi: 10.1007/s00262-020-02679-5
[101] Abe M, Yuki Y, Kurokawa S, et al. A rice-based soluble form of a murine TNF-specific llama variable domain of heavy-chain antibody suppresses collagen-induced arthritis in mice. Journal of Biotechnology, 2014, 175: 45-52.
doi: 10.1016/j.jbiotec.2014.02.005 pmid: 24548461
[102] Pant N, Hultberg A, Zhao Y F, et al. Lactobacilli expressing variable domain of llama heavy-chain antibody fragments (lactobodies) confer protection against rotavirus-induced diarrhea. The Journal of Infectious Diseases, 2006, 194(11): 1580-1588.
doi: 10.1086/jid.2006.194.issue-11
[103] Mizukami M, Tokunaga H, Onishi H, et al. Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expression and Purification, 2015, 105: 23-32.
doi: 10.1016/j.pep.2014.09.017 pmid: 25286401
[104] Okazaki F, Aoki J I, Tabuchi S, et al. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Applied Microbiology and Biotechnology, 2012, 96(1): 81-88.
doi: 10.1007/s00253-012-4158-1
[105] Hisada H, Tsutsumi H, Ishida H, et al. High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae. Applied Microbiology and Biotechnology, 2013, 97(2): 761-766.
doi: 10.1007/s00253-012-4211-0
[106] Gomord V, Fitchette A C, Menu-Bouaouiche L, et al. Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnology Journal, 2010, 8(5): 564-587.
doi: 10.1111/j.1467-7652.2009.00497.x pmid: 20233335
[107] Tschofen M, Knopp D, Hood E, et al. Plant molecular farming: much more than medicines. Annual Review of Analytical Chemistry (Palo Alto, Calif), 2016, 9(1): 271-294.
doi: 10.1146/anchem.2016.9.issue-1
[108] Łojewska E, Kowalczyk T, Olejniczak S, et al. Extraction and purification methods in downstream processing of plant-based recombinant proteins. Protein Expression and Purification, 2016, 120: 110-117.
doi: 10.1016/j.pep.2015.12.018 pmid: 26742898
[109] Lim C Y, Lee K J, Oh D B, et al. Effect of the developmental stage and tissue position on the expression and glycosylation of recombinant glycoprotein GA733-FcK in transgenic plants. Frontiers in Plant Science, 2014, 5: 778.
[110] Park S R, Lee J H, Kim K, et al. Expression and in vitro function of anti-breast cancer llama-based single domain antibody VHH expressed in tobacco plants. International Journal of Molecular Sciences, 2020, 21(4): 1354.
doi: 10.3390/ijms21041354
[111] Whaley K J, Hiatt A, Zeitlin L. Emerging antibody products and Nicotiana manufacturing. Human Vaccines, 2011, 7(3): 349-356.
doi: 10.4161/hv.7.3.14266 pmid: 21358287
[112] Conrad U, Plagmann I, Malchow S, et al. ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnology Journal, 2011, 9(1): 22-31.
doi: 10.1111/j.1467-7652.2010.00523.x pmid: 20444206
[113] Teh Y H A, Kavanagh T A. High-level expression of Camelid nanobodies in Nicotiana benthamiana. Transgenic Research, 2010, 19(4): 575-586.
doi: 10.1007/s11248-009-9338-0
[114] Barrera D J, Rosenberg J N, Chiu J G, et al. Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin. Plant Biotechnology Journal, 2015, 13(1): 117-124.
doi: 10.1111/pbi.12244 pmid: 25229405
[115] Modarresi M, Javaran M J, Shams-bakhsh M, et al. Transient expression of anti-VEFGR2 nanobody in Nicotiana tabacum and N. benthamiana. 3 Biotech, 2018, 8(12): 484.
doi: 10.1007/s13205-018-1500-z pmid: 30467531
[116] Morello E, Bermúdez-Humarán L G, Llull D, et al. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. Journal of Molecular Microbiology and Biotechnology, 2008, 14(1-3): 48-58.
pmid: 17957110
[117] Andersen K K, Strokappe N M, Hultberg A, et al. Neutralization of Clostridium difficile toxin B mediated by engineered lactobacilli that produce single-domain antibodies. Infection and Immunity, 2016, 84(2): 395-406.
doi: 10.1128/IAI.00870-15 pmid: 26573738
[118] Cérutti M, Golay J. Lepidopteran cells, an alternative for the production of recombinant antibodies? mAbs, 2012, 4(3): 294-309.
doi: 10.4161/mabs.19942 pmid: 22531440
[119] Gecchele E, Merlin M, Brozzetti A, et al. A comparative analysis of recombinant protein expression in different biofactories: bacteria, insect cells and plant systems. Journal of Visualized Experiments, 2015(97): e52459.
[120] Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, et al. Protein production using the baculovirus-insect cell expression system. Biotechnology Progress, 2014, 30(1): 1-18.
pmid: 24265112
[121] Le L T M, Nyengaard J R, Golas M M, et al. Vectors for expression of signal peptide-dependent proteins in baculovirus/insect cell systems and their application to expression and purification of the high-affinity immunoglobulin gamma Fc receptor I in complex with its gamma chain. Molecular Biotechnology, 2018, 60(1): 31-40.
doi: 10.1007/s12033-017-0041-8 pmid: 29143175
[122] Gómez-Sebastián S, Nuñez M C, Garaicoechea L, et al. Rotavirus A-specific single-domain antibodies produced in baculovirus-infected insect larvae are protective in vivo. BMC Biotechnology, 2012, 12: 59.
pmid: 22953695
[123] Narjes S, Mahdi H, Ali J, et al. Expressing of recombinant VEGFR2-specific nanobody in baculovirus expression system. Iranian Journal of Biotechnology, 2021, 19(1): e2783.
doi: 10.30498/IJB.2021.2783 pmid: 34179196
[124] Magaña-Ortíz D, Fernández F, Loske A M, et al. Extracellular expression in Aspergillus niger of an antibody fused to Leishmania sp. antigens. Current Microbiology, 2018, 75(1): 40-48.
doi: 10.1007/s00284-017-1348-1 pmid: 28861662
[125] Havlik D, Brandt U, Bohle K, et al. Establishment of Neurospora crassa as a host for heterologous protein production using a human antibody fragment as a model product. Microbial Cell Factories, 2017, 16(1): 1-15.
doi: 10.1186/s12934-016-0616-2
[126] Anyaogu D C, Mortensen U H. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins. Current Opinion in Biotechnology, 2015, 36: 122-128.
doi: 10.1016/j.copbio.2015.08.012 pmid: 26340101
[127] Zubieta M P, Contesini F J, Rubio M V, et al. Protein profile in Aspergillus nidulans recombinant strains overproducing heterologous enzymes. Microbial Biotechnology, 2018, 11(2): 346-358.
doi: 10.1111/mbt2.2018.11.issue-2
[1] 王茂军, 色依德·斯马依, 蔡逸安, 李庆刚, 路福平, 李玉. 不同信号肽及其组合对果聚糖蔗糖酶异源表达的影响*[J]. 中国生物工程杂志, 2023, 43(5): 37-44.
[2] 吴悦, 孙白荷, 赵芮, 李延飞, 马琳琳. 不同给药途径的治疗性纳米抗体研究进展[J]. 中国生物工程杂志, 2023, 43(1): 59-70.
[3] 鲍奕恺,洪皓飞,施杰,周志昉,吴志猛. 靶向PSMA多价纳米抗体的制备及其生物学活性表征*[J]. 中国生物工程杂志, 2022, 42(5): 37-45.
[4] 曾弘烨,宁文静,罗文新. ADC药物的抗体组成及其作用靶点研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 69-80.
[5] 王荣香,宋佳,孙博,闫雪,张万忠,赵晨. 香豆素类化合物功能及生物合成研究进展*[J]. 中国生物工程杂志, 2022, 42(12): 79-90.
[6] 吴琼,赵昕,杜玉瑶,毛淑红. 细胞色素P450还原酶与CYP17的共表达及其功能分析*[J]. 中国生物工程杂志, 2022, 42(10): 1-8.
[7] 李丁,李兰,安允飞,毕振威,于晓明,陈瑾,郑其升. 联合策略优化犬α干扰素的酵母表达*[J]. 中国生物工程杂志, 2022, 42(1/2): 88-95.
[8] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[9] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[10] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[11] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[12] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[13] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[14] 武瑞君,李治非,张鑫,濮润,敖翼,孙燕荣. 新冠病毒抗体药物研发进展及展望分析[J]. 中国生物工程杂志, 2020, 40(5): 1-6.
[15] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.