Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (1/2): 88-95    DOI: 10.13523/j.cb.2107010
技术与方法     
联合策略优化犬α干扰素的酵母表达*
李丁1,2,3,李兰1,2,3,安允飞4,毕振威5,于晓明1,2,3,陈瑾1,2,3,郑其升1,2,3,**()
1 江苏省农业科学院动物免疫工程研究所 南京 210014
2 江苏省动物重要疫病与人兽共患病防控协同创新中心 扬州 225009
3 江苏省食品质量安全重点实验室-省部共建国家重点实验室培育基地 南京 210014
4 南京农业大学食品科技学院 南京 210095
5 江苏省农业科学院兽医研究所 南京 210014
Optimized Yeast Expression of Canine Interferon-α Using a Combined Strategy
LI Ding1,2,3,LI Lan1,2,3,AN Yun-fei4,BI Zhen-wei5,YU Xiao-ming1,2,3,CHEN Jin1,2,3,ZHENG Qi-sheng1,2,3,**()
1 Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
2 Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
3 Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
4 College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
5 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
 全文: PDF(1994 KB)   HTML
摘要:

前期研究在毕赤酵母中分泌表达了犬α干扰素(CaIFN),其活性较高但产量未达到理想水平。目前工作的重点是提高重组蛋白产量。构建含有1、2、4、6、8拷贝CaIFN基因的酵母转化子,其中KM-6CaIFN产量最高,与KM-1CaIFN相比提高了200.6%。共表达8种分子伴侣,其中Hac蛋白能够提高KM-6CaIFN和KM-8CaIFN的目的蛋白产量,提高幅度分别为32.1%和113.1%。在此基础上继续增加CaIFN拷贝数,可观察到KM-12CaIFN-Hac的产量最高,是KM-8CaIFN-Hac的1.33倍,同时是KM-1CaIFN的5.61倍。通过与梯度稀释的BSA进行蛋白质条带比较,评估KM-12CaIFN-Hac的靶蛋白产量约为581 mg/L,为目前报道中酵母产犬α干扰素最高值。

关键词: 犬α干扰素毕赤酵母重组蛋白产量多拷贝分子伴侣    
Abstract:

Canine interferon-α(CaIFN) was expressed in Pichia pastoris in the previous studies, which had high biological activity and relatively low yield. Therefore, increasing the yield of recombinant protein is the key task to promote the application of CaIFN. Yeast transformants containing 1, 2, 4, 6, and 8 copies of CaIFN gene were generated, and the yield of KM-6CaIFN was the highest, which was 200.6% higher than that of KM-1CaIFN. 8 molecular chaperones were co-expressed with CaIFN, and the Hac protein could increase the target protein yield of KM-6CaIFN and KM-8CaIFN by 32.1% and 113.1%, respectively. More copies of CaIFN were integrated into KM-8CaIFN-Hac strain. SDS-PAGE analysis showed that the yield of KM-12CaIFN-Hac was 1.33 times that of KM-8CaIFN-Hac, and 5.61 times that of KM-1CaIFN, respectively. By comparing protein bands with serially dilution BSA, the yield of KM-12CaIFN-Hac was estimated to be about 581 mg/L, which is the highest value in P. pastoris reported so far.

Key words: CaIFN    Pichia pastoris    Recombinant protein yield    Multi-copy    Molecular chaperones
收稿日期: 2021-07-03 出版日期: 2022-03-03
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(32002316);国家自然科学基金(31802220);江苏省农业自主创新专项资助项目(CX(20)3096)
通讯作者: 郑其升     E-mail: njcvc1302@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李丁
李兰
安允飞
毕振威
于晓明
陈瑾
郑其升

引用本文:

李丁,李兰,安允飞,毕振威,于晓明,陈瑾,郑其升. 联合策略优化犬α干扰素的酵母表达*[J]. 中国生物工程杂志, 2022, 42(1/2): 88-95.

LI Ding,LI Lan,AN Yun-fei,BI Zhen-wei,YU Xiao-ming,CHEN Jin,ZHENG Qi-sheng. Optimized Yeast Expression of Canine Interferon-α Using a Combined Strategy. China Biotechnology, 2022, 42(1/2): 88-95.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2107010        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I1/2/88

Primers Sequence (5'-3') PCR detection
qGAP-F CCAGCGGCAACAAGATCAAC Real-time
qGAP-R CTCCTCGTTGACACCGACAA quantitative PCR
qIFN-F GTTCTGTCCAGATACTTCTTC
qIFN-R GGAGAGTGATTTCTATCTTGC
表1  qPCR所用引物
Molecular chaperone Accession number
Hac* PAS_chr1-1_0381
Fhl PAS_chr4_0980
INO PAS_chr2-2_0113
YDJ PAS_chr2-2_0066
SSA4 PAS_chr3_0230
BiP PAS_chr2-1_0140
PDI PAS_chr4_0844
Erv PAS_chr2-1_0287
表2  共表达的分子伴侣
图1  KM-1CaIFN发酵液上清的SDS-PAGE (a)和Western blot(b) 检测
图2  双酶切验证重组表达质粒
Strains Average copy number of CaIFN*
KM-1CaIFN 1
KM-2CaIFN 1.95 ± 0.26
KM-4CaIFN 3.79 ± 0.13
KM-6CaIFN 5.77 ± 0.22
KM-8CaIFN 7.64 ± 0.15
KM-12CaIFN-Hac 11.42 ± 0.53
KM-14CaIFN-Hac 13.13 ± 0.47
KM-16CaIFN-Hac 14.79 ± 0.71
表3  酵母转化子的拷贝数分析
图3  基因拷贝数对CaIFN产量的影响
图4  共表达分子伴侣对KM-6CaIFN菌株产CaIFN的影响
图5  共表达分子伴侣对KM-8CaIFN菌株产CaIFN的影响
图6  增加基因拷贝数对共表达菌株产CaIFN的影响
图7  KM-1CaIFN、KM-12CaIFN-Hac发酵液上清的CaIFN蛋白定量
[1] 昝芳, 白海霞, 崔君. 天津地区犬常见传染病的调查及防控措施. 天津农学院学报, 2017, 24(4):90-93.
Zan F, Bai H X, Cui J. Investigation and prevention control measures of common infectious diseases in canine in Tianjin area. Journal of Tianjin Agricultural University, 2017, 24(4):90-93.
[2] Borden E C. Interferons: rationale for clinical trials in neoplastic disease. Annals of Internal Medicine, 1979, 91(3):472.
pmid: 382941
[3] Tompkins W A. Immunomodulation and therapeutic effects of the oral use of interferon-alpha: mechanism of action. Journal of Interferon & Cytokine Research, 1999, 19(8):817-828.
[4] Carvalho O V, Saraiva G L, Ferreira C G T, et al. In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus. Canadian Journal of Veterinary Research, 2014, 78(4):283-289.
[5] Werten M W, van den Bosch T J, Wind R D, et al. High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast (Chichester, England), 1999, 15(11):1087-1096.
doi: 10.1002/(ISSN)1097-0061
[6] Li D, Zhang B, Li S T, et al. A novel vector for construction of markerless multicopy overexpression transformants in Pichia pastoris. Frontiers in Microbiology, 2017, 8:1698.
doi: 10.3389/fmicb.2017.01698
[7] 曹瑞兵, 王艳, 魏建超, 等. 犬α1干扰素在毕赤酵母中的分泌表达及其抗病毒活性研究. 南京农业大学学报, 2008, 31(4):107-112.
Cao R B, Wang Y, Wei J C, et al. Secreted expression of canine interferon alpha subtype 1 in Pichia pastoris and its antiviral activity. Journal of Nanjing Agricultural University, 2008, 31(4):107-112.
[8] Li D, Zhang H M, Yang L, et al. Surface display of classical swine fever virus E2 glycoprotein on gram-positive enhancer matrix (GEM) particles via the SpyTag/SpyCatcher system. Protein Expression and Purification, 2020, 167:105526.
doi: 10.1016/j.pep.2019.105526
[9] Li D, Wu J C, Chen J, et al. Optimized expression of classical swine fever virus E2 protein via combined strategy in Pichia pastoris. Protein Expression and Purification, 2020, 167:105527.
doi: 10.1016/j.pep.2019.105527
[10] Guerfal M, Ryckaert S, Jacobs P P, et al. The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microbial Cell Factories, 2010, 9:49.
doi: 10.1186/1475-2859-9-49 pmid: 20591165
[11] Zhao H, Blazanovic K, Choi Y, et al. Gene and protein sequence optimization for high-level production of fully active and aglycosylated lysostaphin in Pichia pastoris. Applied and Environmental Microbiology, 2014, 80(9):2746-2753.
doi: 10.1128/AEM.03914-13
[12] Zhu T, Guo M, Tang Z, et al. Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. Journal of Applied Microbiology, 2009, 107(3):954-963.
doi: 10.1111/j.1365-2672.2009.04279.x pmid: 19486418
[13] Delic M, Valli M, Graf A B, et al. The secretory pathway: exploring yeast diversity. FEMS Microbiology Reviews, 2013, 37(6):872-914.
doi: 10.1111/1574-6976.12020
[14] Zheng X Y, Zhang Y M, Zhang X Y, et al. Fhl1p protein, a positive transcription factor in Pichia pastoris, enhances the expression of recombinant proteins. Microbial Cell Factories, 2019, 18(1):207.
doi: 10.1186/s12934-019-1256-0
[15] Chang H J, Jones E W, Henry S A. Role of the unfolded protein response pathway in regulation of INO1 and in the sec14 bypass mechanism in Saccharomyces cerevisiae. Genetics, 2002, 162(1):29-43.
doi: 10.1093/genetics/162.1.29 pmid: 12242221
[16] Yu P, Zhu Q, Chen K F, et al. Improving the secretory production of the heterologous protein in Pichia pastoris by focusing on protein folding. Applied Biochemistry and Biotechnology, 2015, 175(1):535-548.
doi: 10.1007/s12010-014-1292-5
[17] Yin Y, Garcia M R, Novak A J, et al. Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic Reticulum. PLoS Biology, 2018, 16(8):e2005140.
doi: 10.1371/journal.pbio.2005140
[1] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[2] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[3] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[4] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[5] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[6] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[7] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[8] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[9] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[10] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[11] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[12] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[13] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[14] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[15] 黄鹏,杜望春,施尉珺,饶玉良,孙庆文,张宁. 人源类溶菌酶蛋白6的功能研究及生理特性分析 *[J]. 中国生物工程杂志, 2018, 38(3): 1-8.