Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (7): 114-121    DOI: 10.13523/j.cb.2212031
综述     
仿生纳米载药体系的制备及在疾病治疗中的应用*
刘霖颖1,**(),沈洁2,陈亮1,张虎成1,赵新颖1
1 北京电子科技职业学院生物工程学院 北京 100176
2 中国科学院过程工程研究所 生化工程国家重点实验室 北京 100190
Biomimetic Nanomedicine Delivery System Preparation and Disease Therapy Application
Lin-ying LIU1,**(),Jie SHEN2,Liang CHEN1,Hu-cheng ZHANG1,Xin-ying ZHAO1
1 College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
2 State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(1120 KB)   HTML
摘要:

纳米载药体系由于具有特殊的理化性质而被广泛应用于疾病治疗。然而,传统的合成纳米颗粒无法跨越天然屏障,且难以逃避免疫监视,因此在临床应用中副作用较大。仿生纳米颗粒由天然材料改造或以化学方法模仿生物结构的关键特征制备获得,在化学、物理或形态学上与生物学结构具有相似性,因此在惰性排斥、克服屏障和活性作用三方面表现出优异的智能化递送性能,可用于更加高效安全的药物递送。总结仿生纳米颗粒用于药物递送的设计原理,阐述四类仿生纳米载药体系的制备方法,归纳其应用于罕见病、神经退行性疾病、肿瘤、抗病毒疫苗研发和其他靶向治疗等领域的研究进展,并对该领域研究面临的应用挑战、潜在解决方案和未来研究方向进行展望。

关键词: 仿生纳米颗粒药物递送疾病治疗生物材料    
Abstract:

Nanodrug delivery systems are widely used in disease treatment due to their special physical and chemical properties. However, the traditional synthetic nanoparticles cannot cross the natural barrier, and it is difficult to escape immune surveillance, so they are not effective in clinical applications. Biomimetic nanoparticles are obtained by modification of natural materials or by chemical methods imitating the key characteristics of biological structures. They are similar to biologically related structures in chemistry, physics or morphology. Therefore, they exhibit excellent intelligent delivery performance in inert rejection, barrier overcoming and active effects, and can be used for more efficient and safe drug delivery. Biomimetic nano-drug delivery systems are divided into four categories: nano-drug delivery systems designed based on natural biological macromolecules, drug delivery systems related to cells and cell membranes, drug delivery systems of extracellular vesicles such as extracellular secretions, and nano drug delivery systems mimicking biological structures. The design principle of biomimetic nanoparticles used for drug delivery is summarized, the preparation methods of four kinds of biomimetic nanoparticle drug delivery systems are elaborated, the research progress of their application in rare diseases, neurodegenerative diseases, tumors, antiviral vaccine research and development and other targeted therapies is summarized, and the clinical application challenges, potential solutions and future research directions in this field are also discussed.

Key words: Biomimetic    Nanoparticle    Drug delivery    Disease treatment    Biomaterial
收稿日期: 2022-12-23 出版日期: 2023-08-03
ZTFLH:  Q819  
基金资助: 北京市教育委员会科学研究计划(KM202210858001)
通讯作者: **电子信箱:llyspo@163.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘霖颖
沈洁
陈亮
张虎成
赵新颖

引用本文:

刘霖颖, 沈洁, 陈亮, 张虎成, 赵新颖. 仿生纳米载药体系的制备及在疾病治疗中的应用*[J]. 中国生物工程杂志, 2023, 43(7): 114-121.

Lin-ying LIU, Jie SHEN, Liang CHEN, Hu-cheng ZHANG, Xin-ying ZHAO. Biomimetic Nanomedicine Delivery System Preparation and Disease Therapy Application. China Biotechnology, 2023, 43(7): 114-121.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2212031        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I7/114

图1  仿生纳米颗粒设计的基本单元
[1] Mano J F, Choi I S, Khademhosseini A. Biomimetic interfaces in biomedical devices. Advanced Healthcare Materials, 2017, 6(15): 1700761.
doi: 10.1002/adhm.v6.15
[2] Sonju J J, Dahal A, Singh S S, et al. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. Journal of Controlled Release, 2021, 329: 624-644.
doi: 10.1016/j.jconrel.2020.09.055 pmid: 33010333
[3] Wang Q H, Cheng S, Qin F, et al. Application progress of RVG peptides to facilitate the delivery of therapeutic agents into the central nervous system. RSC Advances, 2021, 11(15): 8505-8515.
doi: 10.1039/d1ra00550b pmid: 35423368
[4] Porosk L, Gaidutšik I, Langel Ü. Approaches for the discovery of new cell-penetrating peptides. Expert Opinion on Drug Discovery, 2021, 16(5): 553-565.
doi: 10.1080/17460441.2021.1851187 pmid: 33874824
[5] Ma W J, Peng H, Liu K W, et al. Efficacy of dual-targeting combined anti-tuberculosis drug delivery system in the treatment of tuberculous meningitis. Journal of Biomedical Nanotechnology, 2021, 17(10): 2034-2042.
doi: 10.1166/jbn.2021.3169 pmid: 34706803
[6] You L H, Wang J, Liu T Q, et al. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in parkinsonian mice. ACS Nano, 2018, 12(5): 4123-4139.
doi: 10.1021/acsnano.7b08172 pmid: 29617109
[7] Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. International Journal of Biological Macromolecules, 2019, 121: 556-571.
doi: S0141-8130(18)34256-9 pmid: 30321638
[8] Kuo P H, Teng Y H, Cin A L, et al. Heparan sulfate targeting strategy for enhancing liposomal drug accumulation and facilitating deep distribution in tumors. Drug Delivery, 2020, 27(1): 542-555.
doi: 10.1080/10717544.2020.1745326
[9] Chen K R, Zhang Y Z, Zhu L J, et al. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. Journal of Controlled Release, 2022, 341: 869-891.
doi: 10.1016/j.jconrel.2021.12.020
[10] Huang J, Ma W J, Sun H H, et al. Self-assembled DNA nanostructures-based nanocarriers enabled functional nucleic acids delivery. ACS Applied Bio Materials, 2020, 3(5): 2779-2795.
doi: 10.1021/acsabm.9b01197 pmid: 35025408
[11] Meena C L, Singh D, Kizhakeetil B, et al. Triazine-based Janus G-C nucleobase as a building block for self-assembly, peptide nucleic acids, and smart polymers. The Journal of Organic Chemistry, 2021, 86(4): 3186-3195.
doi: 10.1021/acs.joc.0c02530
[12] Shani L, Michelson A N, Minevich B, et al. DNA-assembled superconducting 3D nanoscale architectures. Nature Communications, 2020, 11(1): 5697.
doi: 10.1038/s41467-020-19439-9 pmid: 33173061
[13] Yu H L, Yang Z H, Li F, et al. Cell-mediated targeting drugs delivery systems. Drug Delivery, 2020, 27(1): 1425-1437.
doi: 10.1080/10717544.2020.1831103 pmid: 33096949
[14] Ferreira D, Moreira J N, Rodrigues L R. New advances in exosome-based targeted drug delivery systems. Critical Reviews in Oncology, 2022, 172: 103628.
doi: 10.1016/j.critrevonc.2022.103628
[15] Kimiz-Gebologlu I, Oncel S S. Exosomes: large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. Journal of Controlled Release, 2022, 347: 533-543.
doi: 10.1016/j.jconrel.2022.05.027 pmid: 35597405
[16] Jiang Y, Wang F B, Wang K, et al. Engineered exosomes: a promising drug delivery strategy for brain diseases. Current Medicinal Chemistry, 2022, 29(17): 3111-3124.
doi: 10.2174/0929867328666210902142015
[17] Yuan A R, Ruan L, Jia R D, et al. Tumor exosome-mimicking iron oxide nanoparticles for near infrared-responsive drug delivery. ACS Applied Nano Materials, 2022, 5(1): 996-1002.
doi: 10.1021/acsanm.1c03643
[18] Liu L Y, Li Y, Peng H, et al. Targeted exosome coating gene-chem nanocomplex as “nanoscavenger” for clearing α-synuclein and immune activation of Parkinson’s disease. Science Advances, 2020, 6(50): eaba3967.
doi: 10.1126/sciadv.aba3967
[19] 孙庆雪, 邵伟, 黄桂华. 脂质体制备方法的选择. 中成药, 2010, 32(8): 1397-1401.
Sun Q X, Shao W, Huang G H. Selection of preparation methods of liposomes. Chinese Traditional Patent Medicine, 2010, 32(8): 1397-1401.
[20] Filipczak N, Pan J Y, Yalamarty S S K, et al. Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 2020, 156: 4-22.
doi: 10.1016/j.addr.2020.06.022 pmid: 32593642
[21] Haddadzadegan S, Dorkoosh F, Bernkop-Schnürch A. Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based nanocarriers. Advanced Drug Delivery Reviews, 2022, 182: 114097.
doi: 10.1016/j.addr.2021.114097
[22] Shah S, Dhawan V, Holm R, et al. Liposomes: advancements and innovation in the manufacturing process. Advanced Drug Delivery Reviews, 2020, 154-155: 102-122.
[23] Bottcher S E, Lou J C, Best M D. Liposome triggered content release through molecular recognition of inositol trisphosphate. Chemical Communications, 2022, 58(28): 4520-4523.
doi: 10.1039/D2CC00951J
[24] Delfi M, Sartorius R, Ashrafizadeh M, et al. Self-assembled peptide and protein nanostructures for anti-cancer therapy: targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today, 2021, 38: 101119.
doi: 10.1016/j.nantod.2021.101119
[25] Katyal P, Meleties M, Montclare J K. Self-assembled protein- and peptide-based nanomaterials. ACS Biomaterials Science & Engineering, 2019, 5(9): 4132-4147.
[26] Augustine R, Kalva N, Kim H A, et al. PH-responsive polypeptide-based smart nano-carriers for theranostic applications. Molecules, 2019, 24(16): 2961.
doi: 10.3390/molecules24162961
[27] Dharmayanti C, Gillam T A, Klingler-Hoffmann M, et al. Strategies for the development of pH-responsive synthetic polypeptides and polymer-peptide hybrids: recent advancements. Polymers, 2021, 13(4): 624.
doi: 10.3390/polym13040624
[28] 黄晚秋, 高苗苗, 徐源, 等. 多糖纳米载体的自组装制备途径及生物应用. 高分子通报, 2020(10): 21-29.
Huang W Q, Gao M M, Xu Y, et al. Self-assembly approach and biological application of polysaccharide nanocarrier. Polymer Bulletin, 2020(10): 21-29.
[29] Li Y W, Zhou M, Song Y B, et al. Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature, 2021, 594(7863): 380-384.
doi: 10.1038/s41586-021-03564-6
[30] Hannewald N, Winterwerber P, Zechel S, et al. DNA origami meets polymers:a powerful tool for the design of defined nanostructures. Angewandte Chemie International Edition, 2021, 60(12): 6218-6229.
[31] Zhu Y N, Shen R C, Vuong I, et al. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression. Nature Communications, 2022, 13(1): 4282.
doi: 10.1038/s41467-022-31993-y pmid: 35879315
[32] Chen Z W, Hu Q Y, Gu Z. Leveraging engineering of cells for drug delivery. Accounts of Chemical Research, 2018, 51(3): 668-677.
doi: 10.1021/acs.accounts.7b00526 pmid: 29446615
[33] Mohale S, Kunde S S, Wairkar S. Biomimetic fabrication of nanotherapeutics by leukocyte membrane cloaking for targeted therapy. Colloids and Surfaces B: Biointerfaces, 2022, 219: 112803.
doi: 10.1016/j.colsurfb.2022.112803
[34] Chen Y T, Zhu M R, Huang B T, et al. Advances in cell membrane-coated nanoparticles and their applications for bone therapy. Biomaterials Advances, 2023, 144: 213232.
doi: 10.1016/j.bioadv.2022.213232
[35] Oroojalian F, Beygi M, Baradaran B, et al. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small, 2021, 17(12): 2006484.
doi: 10.1002/smll.v17.12
[36] Wang H J, Liu Y, He R Q, et al. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomaterials Science, 2020, 8(2): 552-568.
doi: 10.1039/c9bm01392j pmid: 31769765
[37] 邢昊楠, 陆梅, 刘瑛琪, 等. 基于外泌体的抗肿瘤药物靶向递送的研究进展. 药学学报, 2022, 57(1): 150-158.
Xing H N, Lu M, Liu Y Q, et al. Research progress of exosomes based targeted delivery of antitumor drugs. Acta Pharmaceutica Sinica, 2022, 57(1): 150-158.
[38] 吴忧, 辛林. 新的药物传递系统: 外泌体作为药物载体递送. 中国生物工程杂志, 2020, 40(9): 28-35.
Wu Y, Xin L. New drug delivery system: delivery of exosomes as drug carriers. China Biotechnology, 2020, 40(9): 28-35.
[39] Xu Y Q, Fei J B, Li G L, et al. Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angewandte Chemie International Edition, 2019, 58(17): 5572-5576.
[40] Kumar S, Karmacharya M, Michael I J, et al. Programmed exosome fusion for energy generation in living cells. Nature Catalysis, 2021, 4(9): 763-774.
doi: 10.1038/s41929-021-00669-z
[41] Zhang J W, Li D D, Zhang R, et al. Delivery of microRNA-21-sponge and pre-microRNA-122 by MS 2 virus-like particles to therapeutically target hepatocellular carcinoma cells. Experimental Biology and Medicine, 2021, 246(23): 2463-2472.
doi: 10.1177/15353702211035689
[42] Olszewska-Widdrat A, Bennet M, Mickoleit F, et al. Bacteriophage-templated assembly of magnetic nanoparticles and their actuation potential. ChemNanoMat, 2021, 7(8): 942-949.
doi: 10.1002/cnma.v7.8
[43] Yang G Z, Liu Y, Jin S, et al. Development of core-shell nanoparticle drug delivery systems based on biomimetic mineralization. ChemBioChem, 2020, 21(20): 2871-2879.
doi: 10.1002/cbic.v21.20
[44] Zhang M J, Huang Y Y. siRNA modification and delivery for drug development. Trends in Molecular Medicine, 2022, 28(10): 892-893.
doi: 10.1016/j.molmed.2022.08.003
[45] Zhang X P, Goel V, Robbie G J. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. The Journal of Clinical Pharmacology, 2020, 60(5): 573-585.
doi: 10.1002/jcph.v60.5
[46] Titze-de-Almeida S S, de Paula Brandão P R, Faber I, et al. Leading RNA interference therapeutics part 1: silencing hereditary transthyretin amyloidosis, with a focus on patisiran. Molecular Diagnosis & Therapy, 2020, 24(1): 49-59.
[47] Scott L J. Givosiran: first approval. Drugs, 2020, 80(3): 335-339.
doi: 10.1007/s40265-020-01269-0 pmid: 32034693
[48] Agarwal S, Simon A R, Goel V, et al. Pharmacokinetics and pharmacodynamics of the small interfering ribonucleic acid, givosiran, in patients with acute hepatic porphyria. Clinical Pharmacology & Therapeutics, 2020, 108(1): 63-72.
[49] Liu L Y, Li Y, Liu R Y, et al. Switchable nanoparticle for programmed gene-chem delivery with enhanced neuronal recovery and CT imaging for neurodegenerative disease treatment. Materials Horizons, 2019, 6(9): 1923-1929.
doi: 10.1039/C9MH00482C
[50] Liao X, Liu Y D, Zheng J R, et al. Diverse pathways of engineered nanoparticle-induced NLRP 3 inflammasome activation. Nanomaterials, 2022, 12(21): 3908.
doi: 10.3390/nano12213908
[51] Liu H H, Han Y B, Wang T T, et al. Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanoparticles. Journal of the American Chemical Society, 2020, 142(52): 21730-21742.
doi: 10.1021/jacs.0c09390
[52] Zhao L W, Gu C Y, Gan Y, et al. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. Journal of Controlled Release, 2020, 318: 1-15.
doi: S0168-3659(19)30723-0 pmid: 31830541
[53] Lin X B, Lin L G, Wu J Y, et al. A targeted siRNA-loaded PDL1-exosome and functional evaluation against lung cancer. Thoracic Cancer, 2022, 13(11): 1691-1702.
doi: 10.1111/1759-7714.14445 pmid: 35545838
[54] 吕慧中, 赵晨辰, 朱链, 等. 外泌体靶向递药在肿瘤治疗中的进展. 中国生物工程杂志, 2021, 41(5): 79-86.
Lv H Z, Zhao C C, Zhu L, et al. Progress of using exosome for drug targeted delivery in tumor therapy. China Biotechnology, 2021, 41(5): 79-86.
[55] 任磊, 程科满, 张强, 等. 病毒样颗粒在肿瘤治疗中的研究进展. 厦门大学学报(自然科学版), 2021, 60(2): 306-314.
Ren L, Cheng K M, Zhang Q, et al. Research progress of virus-like particles in tumor therapy. Journal of Xiamen University (Natural Science), 2021, 60(2): 306-314.
[56] Park J H, Mohapatra A, Zhou J R, et al. Virus-mimicking cell membrane-coated nanoparticles for cytosolic delivery of mRNA. Angewandte Chemie International Edition, 2022, 61(2): e202113671.
[57] 施逸凡, 陶冶, 石艳春, 等. 病毒样颗粒疫苗在疾病防治中的研究进展. 中国免疫学杂志, 2021, 37(5): 618-624.
Shi Y F, Tao Y, Shi Y C, et al. Research progress of virus-like particles-based vaccines in disease prevention and treatment. Chinese Journal of Immunology, 2021, 37(5): 618-624.
[58] Wang L, Wang X Y, Yang F M, et al. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. Nano Today, 2021, 40: 101280.
doi: 10.1016/j.nantod.2021.101280
[59] Sekhon U D S, Swingle K, Girish A, et al. Platelet-mimicking procoagulant nanoparticles augment hemostasis in animal models of bleeding. Science Translational Medicine, 2022, 14(629): eabb8975.
doi: 10.1126/scitranslmed.abb8975
[60] Riazifar M, Mohammadi M R, Pone E J, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano, 2019, 13(6): 6670-6688.
doi: 10.1021/acsnano.9b01004 pmid: 31117376
[1] 马品品, 熊向源. 高分子纳米材料用于口服胰岛素递送体系*[J]. 中国生物工程杂志, 2023, 43(2/3): 43-53.
[2] 韩佳, 张博文, 毛开云. 新型药物递送系统研发格局分析*[J]. 中国生物工程杂志, 2023, 43(2/3): 1-14.
[3] 郝东霞, 田梦园, 刘洋, 李星, 张媛. 乳外泌体的基本性质及其应用*[J]. 中国生物工程杂志, 2023, 43(2/3): 26-42.
[4] 黄纪安,李婉萌,刘薇,齐梓彤,赵亮. 铜纳米颗粒对缺血性卒中后神经血管单元的保护作用[J]. 中国生物工程杂志, 2022, 42(12): 1-11.
[5] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[6] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[7] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[8] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[9] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[10] 程平,张洋子,马翾,陈旭,朱保庆,许文涛. 刺激响应型DNA水凝胶的性质及其应用 *[J]. 中国生物工程杂志, 2020, 40(3): 132-143.
[11] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[12] 方元,张同伟,曹长乾,田杰生,林巍. 趋磁细菌多样性与应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 73-82.
[13] 杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永. 基因编辑技术在疾病治疗中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(11): 87-95.
[14] 王方旭,陈玉玲,耿读艳,陈传芳. 趋磁细菌及磁小体的生物医学应用研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 74-80.
[15] 吴剑荣,彭星桥,詹晓北. 聚唾液酸,一种非GAGs、非免疫原性生物材料的应用研究进展 *[J]. 中国生物工程杂志, 2017, 37(12): 96-102.