Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (12): 73-82    DOI: 10.13523/j.cb.20191210
综述     
趋磁细菌多样性与应用研究进展 *
方元1,2,3,4,**(),张同伟1,2,3,曹长乾1,2,3,田杰生5,林巍1,2,3
1 中国科学院地质与地球物理研究所 中国科学院地球与行星物理重点实验室 北京 100029
2 中国科学院地球科学研究院 北京 100029
3 中国科学院中-法趋磁多细胞生物进化与发育联合实验室 北京 100029
4 中国科学院大学地球与行星科学学院 北京 100049 5 中国农业大学生物学院 北京 100193
Diversity and Applications of Magnetotactic Bacteria
FANG Yuan1,2,3,4,**(),ZHANG Tong-wei1,2,3,CAO Chang-qian1,2,3,TIAN Jie-sheng5,LIN Wei1,2,3
1 Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics,Chinese Academy of Sciences, Beijing 100029, China
2 Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
3 France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms,Chinese Academy of Sciences, Beijing 100029, China
4 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(595 KB)   HTML
摘要:

趋磁细菌是一类可以沿磁场方向进行运动的微生物统称,在细胞内合成由生物膜包被、链状排列、纳米级、单磁畴的磁铁矿 (Fe3O4) 或胶黄铁矿 (Fe3S4) 的磁小体颗粒。趋磁细菌在自然界分布广泛且多样性丰富,不仅在水环境和沉积环境的铁、硫、碳、氮、磷等元素生物地球化学循环中发挥重要作用,而且在污染治理、疾病诊断和治疗等方面有较好的应用。趋磁细菌磁小体由生物膜包被并在细胞调控下合成,是一类新型的生物源磁性纳米材料。相比常规化学合成的磁性纳米颗粒,磁小体具有大小均一、生物相容性高、兼具化学修饰和基因工程修饰功能等特点,在磁性分离、固定化酶、食品检测、环境监测、医学诊断、磁共振成像、磁热疗和靶向治疗等方面具有广阔的应用前景。在介绍趋磁细菌多样性研究的基础上,综述了趋磁细菌和磁小体的制备、修饰及其应用的最新进展,并对未来的研究进行了展望。

关键词: 趋磁细菌磁小体多样性铁磁性纳米颗粒    
Abstract:

Magnetotactic bacteria (MTB) form intracellular membrane-bounded, nano-sized magnetic iron mineral crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. These magnetic crystals render MTB cells able to navigate in chemically stratified environments by swimming along the Earth’s magnetic field. MTB are morphologically, physiologically and phylogenetically diverse and are widely distributed in aquatic environments. Cells of MTB and their magnetosome nanoparticles have various novel physical and biological properties that can be exploited in a variety of applications. Here we review the current knowledge on the diversity of MTB and summarize the most recent contributions to the field of applications of MTB cells and magnetosome crystals.

Key words: Magnetotactic bacteria    Magnetosomes    Diversity    Iron oxide nanoparticles
收稿日期: 2019-04-13 出版日期: 2020-01-15
ZTFLH:  Q93  
基金资助: * 中国科学院青年创新促进会项目(2015050)
通讯作者: 方元     E-mail: fangyuan0806@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
方元
张同伟
曹长乾
田杰生
林巍

引用本文:

方元,张同伟,曹长乾,田杰生,林巍. 趋磁细菌多样性与应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 73-82.

FANG Yuan,ZHANG Tong-wei,CAO Chang-qian,TIAN Jie-sheng,LIN Wei. Diversity and Applications of Magnetotactic Bacteria. China Biotechnology, 2019, 39(12): 73-82.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191210        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I12/73

图1  代表性趋磁细菌及磁小体的透射电子显微照片
菌 株 分类地位 分离环境 磁小体 参考文献
Magnetospirillum magnetotacticum strain MS-1 α-变形菌纲 淡 水 Fe3O4 [13]
Magnetospirillum gryphiswaldense strain MSR-1 α-变形菌纲 淡 水 Fe3O4 [14]
Magnetospirillum magneticum strain AMB-1 α-变形菌纲 淡 水 Fe3O4 [36]
Magneticvibrio blakemorei strain MV-1 α-变形菌纲 海 洋 Fe3O4 [37]
Magnetospira thiophila strain MMS-1 α-变形菌纲 海 洋 Fe3O4 [38]
Magnetospirillum sp. XM-1 α-变形菌纲 淡 水 Fe3O4 [39]
Magnetospira sp. QH-2 α-变形菌纲 海 洋 Fe3O4 [40]
Ca. Terasakiella magnetica strain PR-1 α-变形菌纲 海 洋 Fe3O4 [17]
Desulfovibrio magneticus strain RS-1 δ-变形菌纲 淡 水 Fe3O4 [18]
Desulfamplus magnetovallimortis strain BW-1 δ-变形菌纲 咸 水 Fe3O4、Fe3S4 [19]
Gamma proteobacterium strain BW-2 γ-变形菌纲 淡 水 Fe3O4 [24]
Gamma proteobacterium strain SS-5 γ-变形菌纲 淡 水 Fe3O4 [24]
Magnetococcus marinus strain MC-1 η-变形菌纲 海 洋 Fe3O4 [41]
Candidatus Magnetococcus massalia” η-变形菌纲 海 洋 Fe3O4 [42]
Magnetofaba australis strain IT-1 η-变形菌纲 海 洋 Fe3O4 [43]
表1  代表性纯培养趋磁细菌
[1] Blakemore R P . Magnetotactic bacteria. Science, 1975,190(4212):377-379.
[2] Bellini S . On a unique behavior of freshwater bacteria. Chinese Journal of Oceanology and Limnology, 2009,27(1):3-5.
[3] Bazylinski D A, Frankel, R B . Magnetosome formation in prokaryotes. Nature Reviews Microbiology. 2004,2(3):217-230.
[4] Lin W, Bazylinski D A, Xiao T , et al. Life with compass: diversity and biogeography of magnetotactic bacteria. Environmental Microbiology, 2014,9(9):2646-2658.
[5] Lin W, Pan Y, Bazylinski D A . Diversity and ecology of and biomineralization by magnetotactic bacteria. Environmental Microbiology Reports, 2017,9(7):345-356.
[6] Liu J, Zhang W, Li X , et al. Bacterial community structure and novel species of magnetotactic bacteria in sediments from a seamount in the Mariana volcanic arc. Scientific Reports, 2017,7(1):17964.
[7] 张文燕, 张圣妲, 肖天 , 等. 趋磁细菌的地域分布特征. 环境科学, 2010,31(2):451-457.
Zhang W Y, Zhang S D, Xiao T , et al. Geographical distribution of magnetotactic bacteria. Environment Science, 2010,31(2):451-457.
[8] Chang S B R, Kirschvink J L . Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annual Review of Earth and Planetary Sciences, 1989,17(7):169-195.
[9] Lin W, Paterson G A, Zhu Q , et al. Origin of microbial biomineralization and magnetotaxis during the Archean. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(1):2171-2176.
[10] Rivas S L, Benzerara K, Lefèvre C T , et al. Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochemical Perspectives Letters. 2017,5(4), 35-41.
[11] Uebe R, Schüler D . Magnetosome biogenesis in magnetotactic bacteria. Nature Reviews Microbiology, 2016,14(10):621-637.
[12] Lefèvre C T, Bazylinski D A . Ecology, diversity and evolution of magnetotactic bacteria. Microbiology and Molecular Biology Reviews, 2013,77(2):497-526.
[13] Blakemore R P, Maratea D, Wolfe R S . Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. Journal of Bacteriology, 1979,140(2):720-729.
[14] Schleife K H, Schüler D, Spring S , et al. The genus magnetospirillum gen. nov.description of magnetospirillum gryphiswaldense sp. nov. and transfer of aquaspirillum magnetotacticum to magnetospirillum magnetotacticum comb. nov. Systematic and Applied Microbiology, 1991,14(3):379-385.
[15] Kawaguchi R, Burgess J G, Matsunaga T . Phylogeny and 16s rRNA sequence of Magnetospirillum sp. AMB-1, an aerobic magnetic bacterium. Nucleic Acids Research, 1992,20(5):1140.
[16] Bazylinski D A . Magnetovibrio blakemorei, gen. nov. sp. nov., a new magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. International Journal of Systematic and Evolutionary Microbiology, 2013,63(2):1824-1833.
[17] Monteil C, Perrière G, Menguy N . Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environmental Microbiology, 2018,20(12):4415-4430.
[18] Sakaguchi T, Burgess J G, Matsunaga T . Magnetite formation by a sulfate-reducing bacterium. Nature, 1993,365(6441):47-49.
[19] Lefèvre C T, Menguy N, Abreu F , et al. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science, 2011,334(1):1720-1723.
[20] Lins U, Keim C N, Evans F , et al. Magnetite (Fe3O4) and greigite (Fe3S4) crystals in multicellular magnetotactic prokaryotes. Geomicrobiology Journal, 2007,24(2):43-50.
[21] Zhou K, Zhang W Y, Zhang K Y , et al. A novel genus of multicellular magnetotactic prokaryotes from the Yellow Sea. Environmental Microbiology, 2012,14(2):405-413.
[22] 张圣妲, 潘红苗, 周克 , 等. 多细胞趋磁原核生物研究进展. 生态学报, 2010,30(12):3311-3318.
Zhang S D, Pan H M, Zhou K , et al. Progress in study of multicellular magnetotactic prokaryotes. Acta Ecologica Sinica, 2010,30(12):3311-3318.
[23] Simmons S L, Sievert M S, Frankel B R , et al. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Applied and Environmental Microbiology, 2004,70(1):6230-6239.
[24] Lefèvre C T, Viloria N, Schmidt M L , et al. Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. International Society for Microbial Ecology, 2011,6(3):440-450.
[25] Ji B, Zhang S D, Zhang W J , et al. The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria. Environmental Microbiology, 2017,19(3):1103-1119.
[26] Lin W, zhang W, Zhao X , et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. The ISME Journal, 2018,12(2):1508-1519.
[27] Abreu F, Le?o P, Vargas G , et al. Culture-independent characterization of a novel magnetotactic member affiliated to the Beta class of the Proteobacteria phylum from an acidic lagoon. Environmental Microbiology, 2018,20(7):2615-2624.
[28] Vali H, F?rster O, Amarantidis G , et al. Magnetotactic bacteria and their magnetofossils in sediments. Earth and Planetary Science Letters, 1987,86(2):389-400.
[29] Spring S, Amann R, Ludwig W , et al. Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Applied and Environmental Microbiology, 1993,59(8):2397-2403.
[30] Jogler C, Wanner G, Kolinko S , et al. Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum. 2011,108(3):1134-1139.
[31] Lin W, Deng A, Wang Z , et al. Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium’ in the phylum Nitrospirae. The ISME Journal, 2014,8(14):2463-2477.
[32] Kolinko S, Richter M, Gl?ckner F O , et al. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environmental Microbiology, 2016,18(1):21-37.
[33] Lefèvre C T, Abreu F, Schmidt M L , et al. Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Applied and Environmental Microbiology, 2010,76(3):3740-3743.
[34] Kolinko S, Jogler C, Katzmann E , et al. Single cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environmental Microbiology, 2011,14(7):1709-1721.
[35] Lin W, Pan Y X . A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. Environmental Microbiology Reports, 2015,7(2):237-242.
[36] Matsunaga T, Sakaguchi T, Tadokoro F . Magnetite formation by a magnetic bacterium capable of growing aerobically. Applied Microbiology and Biotechnology, 1991,35(3):651-655.
[37] Bazylinski D A, Frankel R B, Jannasch, H W . Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature, 1988,334(3):518-519.
[38] Williams T J, Lefèvre C T, Zhao W , et al. Magnetospira thiophila, gen. nov. sp. nov., a new marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). International Journal of Systematic and Evolutionary Microbiology, 2012,62(1):2443-2450.
[39] Wang Y, Lin W, Li J, et al. Characterizing and optimizing magnetosome production of Magnetospirillum sp. XM-1 isolated from Xi’an City Moat,China. FEMS Microbiology Letters , 2015, 362(21):fnv167.
[40] Zhu K, Pan H, Li J , et al. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Research in Microbiology, 2010,161(4):276-283.
[41] Frankel R B, Bazylinski D A, Johnson M S , et al. Magneto-aerotaxis in marine coccoid bacteria. Biophysical Journal, 1997,73(2):994-1000.
[42] Lefèvre C T, Bernadac A, Zhang K , et al. Isolation and characterization of a magnetotactic bacteria from the Mediterranean Sea. Environmental Microbiology, 2009,11(7):1646-1657.
[43] Morillo V, Abreu F, Araujo A C , et al. Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of south-seeking magnetotactic cocci within the Alphaproteobacteria. Frontiers in Microbiology, 2014,5:72.
[44] Kemi C N, Lins U, Farin A M . Elemental analysis of uncultured magnetotactic bacteria exposed to heavy metals. Canadian Journal of Microbiology, 2001,47(7):1132-1136.
[45] Bahaj A S , James P A B,Croudace I W.Metal uptake and separation using magnetotactic bacteria. IEEE Transactions on Magnetics, 1994,30(6):4707-4709.
[46] Bahaj A S, Croudace I W , James P A B,et al. Continuous radionuclide recovery from wastewater using magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 1998,184(2):241-244.
[47] Bahaj A S ,James P A B,Moeschler F D.Magnetic field gradient assisted orientation magnetic separation for the efficient removal of pollutants by magnetotactic bacteria. Abstracts Papers American Chemical Society, 2001,221(1):U580-U580.
[48] Tanaka M, Nakata Y, Mori T , et al. Development of a cell surface display system in a magnetotactic bacterium, “Magnetospirillum magneticum” AMB-1. Applied and Environmental Microbiology, 2008,74(11):3342-3348.
[49] Chen C, Chen L, Wang P , et al. Magnetically-induced elimination of Staphylococcus aureus by magnetotactic bacteria under a swing magnetic field. Nanomedicine, 2017,13(2):363-370.
[50] Ma Q F, Chen C Y, Wei S F , et al. Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip. Biomicro Fluidics, 2012,6(2):024107.
[51] Felfoul O, Mohammadi M, Taherkhani S , et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnology, 2016,11(11):941-947.
[52] Draper O, Byrne M E, Li Z , et al. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and Lim[J]. Molecular Microbiology, 2011,82(2):342-354.
[53] Faivre D, Schüler D . Magnetotactic bacteria and magnetosomes. Chemical Reviews, 2008,108(8):4875-4898.
[54] Clarke C, Davies S. Immunomagnetic cell separation In: Brooks S.A., Schumacher U. (eds) Metastasis research protocols. Methods in Molecular MedicineTM, 2001,58(8):17-23.
[55] Chen C, Wang P, Li L . Applications of bacterial magnetic nanoparticles in nanobiotechnology. Journal of Nanoscience and Nanotechnology, 2016,16(3):2164-2171.
[56] Jajan L H G, Hosseini S N, Ghorbani M , et al. Effects of environmental conditions on high-yield magnetosome production by Magnetospirillum gryphiswaldense MSR-1. Iranian Biomedical Journal, 2018,25(1):361-368.
[57] Ali I, Peng C, Khan Z M , et al. Yield cultivation of magnetotactic bacteria and magnetosomes: A review. Journal of Basic Microbiology, 2017,57(8):643-652.
[58] Kolinko I, Lohbe A, Borg S , et al. Biosynjournal of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nature Nanotechnology, 2014,9(3):193-197.
[59] Guo F, Liu Y, Chen Y , et al. A novel rapid and continuous procedure for large-scale purification of magnetosomes from Magnetospirillum gryphiswaldense. Applied Microbiology and Biotechnology, 2011,90(4):1277-1283.
[60] Xu J J, Liu L Z, He J X , et al. Engineered magnetosomes fused to functional molecule (protein A) provide a highly effective alternative to commercial immunomagnetic beads. Journal of Nanobiotechnology, 2019,17(1):37.
[61] Liu R, Liu J, Tong J , et al. Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Progress in Natural Science: Materials International, 2012,22(1):31-39.
[62] Alphandéry E, Faure S, Seksek O , et al. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano, 2011,5(8):6279-6296.
[63] Mériaux S, Boucher M, Marty B , et al. Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Advanced Healthcare Materials, 2015,4(7):1076-1083.
[64] Matsunaga T ,Hashimoto k,Nakamura N, et al.Phagocytosis of bacterial magnetic by leucocytes. Applied Microbiology and Biotechnology, 1989,31(31):401-405.
[65] Murugan K, Wei J, Alsalhi M S . Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitology Research, 2017,116(1):495-502.
[66] Han L, Li S, Yang Y , et al. Comparison of magnetite nanocrystal formed by biomineralization and chemosynjournal. Journal of Magnetism and Magnetic Materials, 2007,313(1):236-242.
[67] 李爱华, 唐涛, 张惠媛 , 等. 细菌磁小体的修饰及其在病原物检测中的应用. 生物物理学报, 2010,26(6):680-690.
Li A H, Tang T, Zhang H Y , et al. Modification and application magnetosomes in bacterial pathogen detection. Journal of Biophysics, 2010,26(6):680-690.
[68] Matsunaga T, Kamiya S . Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Applied Microbiology and Biotechnology, 1987,26(4):328-332.
[69] Nakamura N, Hashimoto K, Matsunaga T . Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Analytical Chemistry, 1991,63(2):268-272.
[70] Nakamura N, Burgess J G, Yagiuda K , et al. Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Analytical Chemistry, 1993,65(15):2036-2039.
[71] Li A, Zhang H, Zhang X, Tian J , et al. Rapid separation and immunoassay for low levels of Salmonella in foods using magnetosome-antibody complex and real-time fluorescence quantitative PCR. Journal of Separation Science, 2010,33(21):3437-3443.
[72] Guo L Y, Wang Q Q, Sun J B . Application of antibody-labeled magnetosomes in quantitative detection of HBsAg with chemiluminescece-immunoassays. Nanosc New Technol Rep, 2006,11(3):55-59.
[73] Chen J F, Li Y, Wang Z F , et al. High-sensitivity detection of fruit tree viruses using bacterial magnetic particles. Journal of Integrative Plant Biology, 2009,51(4):409-413.
[74] Arakaki A, Webb J, Matstmga T . A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. The Journal of Biological Chemistry, 2003,10(1):8745-8750.
[75] Tanaka T, Takeda H, Ueki F , et al. Rapid and sensitive detection of 17beta-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles. Journal of Biotechnology, 2004,108(2):153-159.
[76] He J X, Tian J S, Xu J J , et al. Strong and oriented conjugation of nanobodies onto magnetosomes for the development of a rapid immunomagnetic assay for the environmental detection of tetrabromobisphenol-A. Analytical and Bioanalytical Chemistry, 2018,410(2):6633-6642.
[77] Kaneta Y, Tsukazaki K, Kubushiro K , et al. Selective cytotoxicity of Adriamycin immunoconjugate of monoclonal antibody MSN-1 to endometrial adenocarcinoma in vitro and in vivo. Oncology Reports, 2000,75(5):1099-1106.
[78] Sun J B, Duan J H, Dai S L , et al. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Letters, 2007,258(1):109-117.
[79] Xiang Z, Yang X, Xu J , et al. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials, 2017,115(2):53-64.
[80] Ota H, Takeyama H, Nakayama H , et al. SNP detection in transforming growth factor-β1 gene using bacterial magnetic particles. Biosensors and Bioelectronics, 2003,18(1):683-687.
[81] Xiang L, Bin W, Huali J , et al. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. The Journal of Gene Medicine, 2007,9(8):679-690.
[82] Wang C, Sun G, Wang Y , et al. Bacterial magnetic particles improve testes-mediated transgene efficiency in mice. Drug Delivery, 2017,24(1):651-659.
[83] Ceyhan B, Alhorn P, Lang C , et al. Semisynthetic biogenic magnetosome nanoparticles for the detection of proteins and nucleic acids. Small, 2006,2(11):1251-1255.
[84] Amemiya Y, Tanaka T, Yoza B , et al. Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. Journal of Biotechnology, 2005,120(3):308-314.
[85] Yoza B, Arakaki A, Matsunaga T . DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. Journal of Biotechnology, 2013,101(3):219-222.
[86] Matsunaga T, Maeda Y, Yoshino T , et al. Fully automated immunoassay for detection of prostate-specific antigen using nano-magnetic beads and micro-polystyrene bead composites, ‘Beads on Beads’. Analytica Chimica Acta, 2007,597(2):331-339.
[87] Yoshino T, Matsunaga T . Efficient and stable display of functional proteins on bacterial magnetic particles using Mms13 as a novel anchor molecule. Applied and Environmental Microbiology, 2006,72(7):465-471.
[88] Xu J, Hu J, Liu L , et al. Surface expression of protein A on magnetosomes and capture of pathogenic bacteria by magnetosome/antibody complexes. Frontiers in Microbiology, 2014,5(3):136-145.
[89] Kugara M, Takeyama H, Tanaka T , et al. Magnetic cell separation using antibody bingding with protein A expressed on bacterial magnetic particles. Analytical Chemistry, 2004,76(6):6207-6213.
[90] Matsunaga T, Takahashi M, Yoshino T , et al. Magnetic separation of CD14 cells using antibody binding with protein A expressed on bacterial magnetic particles for generating dendritic cells. Biochemical and Biophysical Research Communications, 2006,350(3):1019-1025.
[91] Takahashi M, Yoshino T, Matsunaga T . Surface modification of magnetic nanoparticles using asparagines-serine polypeptide designed to control interactions with cell surfaces. Biomaterials, 2010,31(18):4952-4957.
[92] Wang Y, Fan Z, Shao L , et al. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. International Journal of Nanomedicine, 2016,11(3):3287-3303.
[93] Pollithy A, Romer T, Lang C , et al. Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Applied and Environmental Microbiology, 2011,77(17):6165-6171.
[94] Yoshino T, Nishimura T, Mori T , et al. Nano-sized bacterial magnetic particles displaying pyruvate phosphate dikinase for pyrosequencing. Biotechnol Bioeng, 2008,103(2):130-132.
[95] Yoshino T, Takahashi M, Takeyama H , et al. Assembly of G protein-coupled receptors onto nanosized bacterial magnetic particles using Mms16 as an anchor molecule. Applied and Environmental Microbiology, 2004,70(7):2880-2885.
[96] Yoshino T, Shimojo A, Maeda Y , et al. Inducible expression of transmembrane proteins on bacterial magnetic particles in Magnetospirillum magneticum AMB-1. Applied and Environmental Microbiology, 2010,76(4):1152-1157.
[97] Maeda Y, Yoshino T, Takahashi M , et al. Noncovalent immobilization of streptavidin on in vitro- and in vivo-biotinylated bacterial magnetic particles. Applied and Environmental Microbiology, 2008,74(16):5139-5145.
[98] Grant C R, Lee L R, Kristen N , et al. Genome editing method for the anaerobic magnetotactic bacterium Desulfovibrio magneticus RS-1. Applied and Environmental Microbiology, 2018,84(22):e01724-18.
[1] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[2] 王方旭,陈玉玲,耿读艳,陈传芳. 趋磁细菌及磁小体的生物医学应用研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 74-80.
[3] 安云鹤, 程小艳, 田彦捷, 马凯, 高丽娟, 武会娟. DNA提取对微生物多样性测序分析的影响[J]. 中国生物工程杂志, 2017, 37(11): 12-18.
[4] 王世伟, 王卿惠, 翟丽萍, 刘军, 郑苗苗, 王芳, 于志丹. 原核微生物腈转化酶研究进展[J]. 中国生物工程杂志, 2015, 35(10): 100-107.
[5] 王世伟, 王敏. 腈类物降解菌多样性和产腈水合酶研究进展[J]. 中国生物工程杂志, 2011, 31(9): 117-123.
[6] 李霞, 刘佳佳, 陈建华, 栾明宝, 殷珍珍, 杨栋梁. 产喜树碱喜树内生真菌的筛选及喜树内生真菌的SRAP分析[J]. 中国生物工程杂志, 2011, 31(7): 60-64.
[7] 刘新星,刘文斌,闫颖,武海艳. 固体平板磁泳分离细菌新方法的研究[J]. 中国生物工程杂志, 2008, 28(3): 79-83.
[8] 殷旭旺, 赵文. 分子生物学技术在轮虫遗传多样性和系统发生研究中的应用[J]. 中国生物工程杂志, 2005, 25(S1): 215-220.
[9] 李文兵, 余龙江, 周蓬蓬, 朱敏. 趋磁细菌的磁小体[J]. 中国生物工程杂志, 2005, 25(7): 21-27.
[10] 肖调义, 张学文, 章怀云, 唐湘北, 苏建明, 刘臻. 洞庭湖四种黄颡鱼基因组DNA遗传多样性的RAPD分析[J]. 中国生物工程杂志, 2004, 24(3): 84-89.
[11] 陈秀兰, 张玉忠, 高培基. 适冷微生物及其适冷机制研究进展[J]. 中国生物工程杂志, 2003, 23(2): 86-90.
[12] 张丕燕, 谢庄, 刘红林, 陈杰. RAPD技术及其在动物遗传育种中的应用[J]. 中国生物工程杂志, 2000, 20(4): 52-54.
[13] . 海洋生物技术和水产养殖技术[J]. 中国生物工程杂志, 1998, 18(S1): 39-49.
[14] 周立伟, 吴乃虎. 分子生物学技术在濒危植物遗传多样性研究中的应用[J]. 中国生物工程杂志, 1995, 15(4): 22-25.
[15] 徐洵. 海洋生物技术[J]. 中国生物工程杂志, 1995, 15(3): 2-6.