Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 132-143    DOI: 10.13523/j.cb.1907022
Orginal Article     
刺激响应型DNA水凝胶的性质及其应用 *
程平1,张洋子2,马翾2,陈旭2,朱保庆1,许文涛2,**()
1 北京林业大学生物科学与技术学院 北京 100083
2 中国农业大学食品科学与营养工程学院 北京 100083
Properties and Applications of Stimuli-Responsive DNA Hydrogels
CHENG Ping1,ZHANG Yang-zi2,MA Xuan2,CHEN Xu2,ZHU Bao-qing1,XU Wen-tao2,**()
1 College of Biological Science and Technology, Beijing Forestry University, Beijing 100083,China
2 College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083,China
 全文: PDF(588 KB)   HTML
摘要:

DNA水凝胶作为一种生物合成分子,既具有DNA分子的特异性,生物可降解性和分子识别等特性,又具有水凝胶的高亲水性等特征.刺激响应型DNA水凝胶主要是在环境因素的刺激下,利用常规DNA序列经Watson-Crick碱基互补配对形成的DNA分支结构或多种功能核酸的特殊DNA序列形成的i-motif结构;T-A·T三螺旋结构,C-G·C +三螺旋结构及G-四链体结构等对环境的响应行为使水凝胶形成及应用.近年来,刺激响应型DNA水凝胶因其在温度,pH,光,金属离子,生物分子等单刺激因素,以及光热,金属离子,有机物,温度与pH等多刺激因素下的独特应答性质,在生物传感,生物成像,药物递送,生物材料等方面得到了广泛的应用.综述了刺激响应型DNA水凝胶的形成方法,分类及其核酸来源,形成后的表征手段以及在环境刺激下的响应行为与应用,概括了目前刺激响应型DNA水凝胶的研究热点,并就其未来发展趋势做出了预测.

关键词: DNA水凝胶刺激因素生物传感药物递送生物材料    
Abstract:

As a biosynthetic molecule, DNA hydrogels are equipped with specificity, biodegradability and molecular recognition belonging to DNA molecule and high hydrophilicity belonging to hydrogels. Stimuli-responsive DNA hydrogels are mainly prepared by response behaviors of DNA branch structure formed by complementary pairing of bases of DNA sequences or i-motifs formed by DNA special sequences of many functional nucleic acid, T-A·T or C-G·C + triplexes and G-quadruplexes in environment triggers. Recently, stimuli-responsive DNA hydrogels possess broad applications of biosensors, bioimaging, drug delivery, biomaterials etc. with unique response property in single triggers such as temperature, pH, light, metal ions etc. and multi-triggers such as photothermal, metal ions-organics, temperature-pH. The origins of DNA molecule, classification, formation and characterization of stimuli-responsive DNA Hydrogels are developed. Response behaviors to environments and applications of stimuli-responsive DNA hydrogels are reviewed. The current research hotspots of stimuli-responsive DNA hydrogels are summarized. The development trend of stimuli-responsive DNA hydrogels in the future is predicted.

Key words: DNA hydrogel    Stimulus    Biosensors    Drug delivery    Biomaterials
收稿日期: 2019-07-10 出版日期: 2020-04-18
ZTFLH:  Q78  
基金资助: * 国家转基因新品种培育科技重大专项(2018ZX08012-001-004)
通讯作者: 许文涛     E-mail: xuwentao@cau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程平
张洋子
马翾
陈旭
朱保庆
许文涛

引用本文:

程平,张洋子,马翾,陈旭,朱保庆,许文涛. 刺激响应型DNA水凝胶的性质及其应用 *[J]. 中国生物工程杂志, 2020, 40(3): 132-143.

CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels. China Biotechnology, 2020, 40(3): 132-143.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1907022        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/132

图1  i-motif结构的三种构象[14]
[1] 陈娇娇, 袁世睿, 宋亚 , 等. DNA凝胶的研究进展. 国际药学研究杂志, 2017,44(10):935-941.
Chen J J, Yuan S R, Song Y , et al. Research progress of DNA hydrogel. Journal of International Pharmaceutical Research, 2017,44(10):935-941.
[2] 翟茂林, 哈鸿飞 . 水凝胶的合成,性质及应用. 大学化学, 2001,16(5):22-27.
Zhai M L, Ha H F . Synthesis, properties and applications of hydrogels. University Chemistry, 2001,16(5):22-27.
[3] 杨振, 杨连利 . 水凝胶的研究进展及发展新动向. 化工中间体, 2007, ( 1):5-10.
Yang Z, Yang L L . Research status and prospective development of hydrogel. Chemical Intermediates, 2007, ( 1):5-10.
[4] Wang D, Hu Y, Liu P F , et al. Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness. Accounts of Chemical Research, 2017,50(4):733-739.
[5] 宋萍, 叶德楷, 宋世平 , 等. DNA水凝胶的制备及生物应用. 化学进展, 2016,28(5):628-636.
Song P, Ye D K, Song S P , et al. Preparation and biological applications of DNA hydrogel. Progress in Chemistry, 2016,28(5):628-636.
[6] 邵昱, 李闯, 周旭 , 等. DNA超分子水凝胶. 高分子通报, 2015, ( 9):100-108.
Shao Y, Li C, Zhou X , et al. Supramolecular DNA hydrogel. Chinese Polymer Bulletin, 2015, ( 9):100-108.
[7] Dong X, Wei C, Lu L , et al. Fluorescent nanogel based on four-arm PEG-PCL copolymer with porphyrin core for bioimaging. Materials Science and Engineering C, 2016,61:214-219.
[8] Kahn J S, Hu Y W, Willner I . Stimuli-responsive DNA-based hydrogels: from basic principles to applications. Accounts of Chemical Research, 2017,50(4):680-690.
[9] Liu J W . Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter, 2011,7:6757-6767.
[10] Xiong X L, Wu C C, Zhou C S , et al. Responsive DNA-based hydrogels and their applications. Macromol Rapid Commun, 2013,34(16):1271-1283.
[11] Gehring K, Leroy J L , Guéron, et al. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature, 1993,363(6429):561-565.
[12] Leroy J L, Gehring K, Kettani A , et al. Acid multimers of oligodeoxycytidine strands: Stoichiometry, base-pair characterization, and proton exchange properties. Biochemistry, 1993,32(23):6019-6031.
[13] Chen C, Li M, Xing Y , et al. Study of pH-induced folding and unfolding kinetics of the DNA i-motif by stopped-flow circular dichroism. Langmuir, 2012,28(51):17743-17748.
[14] 闫永凤 . DNA双亲分子自组装以及对i-motif结构的影响机制研究. 青岛: 中国石油大学, 2016.
Yan Y F . DNA Amphiphilic molecules self-assembly and studies on mechanisms of the effects on i-motif structure. Qingdao: China University of Petroleum, 2016.
[15] Cheng E J, Xing Y Z, Chen P , et al. A pH-triggered, fast-responding DNA hydrogel. Angewandte Chemie-International Edition, 2009,48(41):7660-7663.
[16] Liao W C, Lilienthal S, Kahn J S , et al. pH-and ligand-induced release of loads from DNA-acrylamide hydrogel microcapsules. Chemical Science, 2017,8(5):3362-3373.
[17] Xu W L, Huang Y S, Zhao H R , et al. DNA Hydrogel with tunable pH-responsive properties produced by rolling circle amplification. Chemistry- A European Journal, 2017,23(72):18276-18281.
[18] Hu Y W, Guo W W, Kahn J S , et al. A Shape-memory DNA-based hydrogel exhibiting two internal memories. Angewandte Chemie-International Edition, 2016,55(13):4210-4214.
[19] Ren J T, Hu Y W, Lu C H , et al. pH-responsive and switchable triplex-based DNA hydrogels. Chemical Science, 2015,6(7):4190-4195.
[20] Hu Y W, Lu C H, Guo W W , et al. A shape memory acrylamide/DNA hydrogel exhibiting switchable dual pH-responsiveness. Advanced Functional Materials, 2015,25(44):6867-6874.
[21] Kang H Z, Liu H P, Zhang X L , et al. Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir, 2011,27(1):399-408.
[22] Peng L, You M X, Yuan Q , et al. Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. Journal of the American Chemical Society, 2012,134(29):12302-12307.
[23] Shimomura S, Nishimura T, Ogura Y , et al. Photothermal fabrication of microscale patterned DNA hydrogels. Royal Society Open Science, 2018,5(2):171779.
[24] Yu X, Hu Y W, Kahn J S , et al. Orthogonal dual-triggered shape-memory DNA-based hydrogels. Chemistry, 2016,2(41):14504-14507.
[25] Guo W, Qi X J, Orbach R , et al. Reversible Ag(+)-crosslinked DNA hydrogels. Chemical Communications, 2014,50(31):4065-4068.
[26] Tanaka S, Wakabayashi K, Fukushima K , et al. Intelligent, biodegradable, and self-healing hydrogels utilizing DNA quadruplexes. Chemistry- An Asian Journal, 2017,12(18):2388-2392.
[27] Lu C H, Guo W W, Hu Y W , et al. Multitriggered shape-memory acrylamide-DNA hydrogels. Journal of the American Chemical Society, 2015,137(50):15723-15731.
[28] Wei X F, Tian T, Jia S , et al. Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets. Analytical Chemistry, 2015,87(8):4275-4282.
[29] Ma Y L, Mao Y, An Y , et al. Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. Analyst, 2018,143(7):1679-1684.
[30] Chen W H, Liao W C, Sohn Y S , et al. Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal-organic framework nanoparticles for controlled drug release. Advanced Functional Materials, 2018,28(8):1705137.
[31] He Y, Yang X, Yuan R , et al. Switchable target-responsive 3D DNA hydrogels as a signal amplification strategy combining with SERS technique for ultrasensitive detection of miRNA 155. Analytical Chemistry, 2017,89(16):8538-8544.
[32] Lyu D Y, Chen S S, Guo W W . Liposome crosslinked polyacrylamide/DNA hydrogel: a smart controlled-release system for small molecular payloads. Small, 2018,14(15):1-8.
[33] 陈庆山, 刘春燕, 刘迎雪 , 等. 核酸体外扩增技术. 中国生物工程杂志, 2004,24(5):10-14.
Chen Q S, Liu C Y, Liu Y X , et al. Progress of nucleic acid amplification technologies. China Biotechnology, 2004,24(5):10-14.
[34] 杨婵, 王瑞嘉, 何婧琳 , 等. 杂交链式反应在生物传感探针设计方面的应用. 化学传感器, 2017,37(3):13-21.
Yang C, Wang R J, He J L , et al. Application of hybrid chain reaction in biosensing probe design. Chemical Sensors, 2017,37(3):13-21.
[35] 王晓亮, 王星宇, 梁长城 , 等. DNA的滚环扩增技术研究进展. 食品工业科技, 2012,33(16):358-363.
Wang X L, Wang X Y, Liang C C , et al. Research progress of rolling circle amplification of DNA. Science and Technology of Food Industry, 2012,33(16):358-363.
[36] Ali M M, Li F, Zhang Z Q , et al. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chemical Society Reviews, 2014,43(10):3324-3341.
[37] Mori Y, Kitao M, Tomita N , et al. Real-time turbidimetry of LAMP reaction for quantifying template DNA. Journal of Biochemical and Biophysical Methods, 2004,59(2):145-157.
[38] Liu N N, Huang F J, Lou X D , et al. DNA hybridization chain reaction and DNA supersandwich self-assembly for ultrasensitive detection. Science China-Chemistry, 2017,60(3):311-318.
[39] Wang G F, He X P, Zhu Y H , et al. G-quadruplex-linked supersandwich DNA structure for electrochemical amplified detection of thrombin. Electroanalysis, 2013,25(8):1960-1966.
[40] Wang J B, Chao J, Liu H J , et al. Clamped hybridization chain reactions for the self-assembly of patterned DNA hydrogels. Angewandte Chemie-International Edition, 2017,56(8), 2171-2175.
[41] 刘剑霜, 谢锋, 吴晓京 , 等. 扫描电子显微镜. 上海计量测试, 2003,30(6):37-39.
Liu J S, Xie F, Wu X J , et al. Scanning electron microscope. Shanghai Measurement and Testing, 2003,30(6):37-39.
[42] Guo W W, Lu C H, Qi X J , et al. Switchable bifunctional stimuli-triggered poly-N-isopropylacrylamide/DNA hydrogels. Angewandte Chemie-International Edition, 2014,53(38):10134-10138.
[43] Topuz F, Okay O . Rheological behavior of responsive DNA hydrogels. Macromolecules, 2008,41(22):8847-8854.
[44] Topuz F, Okay O . Formation of hydrogels by simultaneous denaturation and cross-linking of DNA. Biomacromolecules, 2009,10(9):2652-2661.
[45] 张旭, 徐维奇 . 激光扫描共聚焦显微镜技术的发展及应用. 现代科学仪器, 2001,11(2):21-23.
Zhang X, Xu W Q . Development of confocal microscopy and its application. Modern Scientific Instruments, 2001,11(2):21-23.
[46] 霍霞, 吕建勋, 杨仁东 , 等. 激光共聚焦显微镜与光学显微镜之比较. 激光生物学报, 2001,10(1):76-79.
Huo X, Lv J X, Yang R D , et al. Comparison of laser scanning confocal microscope with light microscope. Acta Laser Biology Sinica, 2001,10(1):76-79.
[47] 张瑞, 叶仲斌, 罗平亚 . 原子力显微镜在聚合物溶液结构研究中的应用. 电子显微学报, 2010,29(5):475-481.
Zhang R, Ye Z B, Luo P Y . The atomic force microscopy study on the microstructure of the polymer solution. Journal of Chinese Electron Microscopy Society, 2010,29(5):475-481.
[48] Binnig G, Quate C F, Gerber C . Atomic force microscope. Physical Review Letters, 1986,56(9):930-934
[49] Hoo C M, Starostin N, West P , et al. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. Journal of Nanoparticle Research, 2008,10(1):89-96.
[50] Li J, Zheng C, Cansiz S , et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. Journal of the American Chemical Society, 2015,137(4):1412-1415.
[51] 刘振佳, 司伊康, 陈晓光 . 圆二色谱测定技术在小分子化合物与DNA相互作用研究中的应用. 药学学报, 2010,45(12):1478-1484.
Liu Z J, Si Y K, Chen X G . Application of circular dichroism to the study of interactions between small molecular compounds and DNA. Acta Pharmaceutica Sinica, 2010,45(12):1478-1484.
[52] Willner I . Stimuli-controlled hydrogels and their applications. Accounts of Chemical Research, 2017,50(4):657-658.
[53] Xing Y Z, Cheng E J, Yang Y , et al. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Advanced Materials, 2011,23(9):1117-1121.
[54] Uzumcu A T, Guney O, Okay O . Nanocomposite DNA hydrogels with temperature sensitivity. Polymer, 2016,100:169-178.
[55] Mansukhani N D, Guiney L M, Wei Z H , et al. Optothermally reversible carbon nanotube-DNA supramolecular hybrid hydrogels. Macromolecular Rapid Communications, 2018,39(2):1-6.
[56] Ishizuka N, Hashimoto Y C, Matsuo Y, et al. Highly expansive DNA hydrogel films prepared with photocrosslinkable poly( vinyl alcohol) . Colloids and Surfaces A-Physicochemical and Engineering Aspects , 2006, 284- 285:440-443.
[57] Huang Y S, Fang L T, Zhu Z , et al. Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device. Biosensors and Bioelectronics, 2016,85:496-502.
[58] Lee S H, Lee C K, Shin S R , et al. The peculiar response of DNA hydrogel fibers to a salt and pH stimulus. Macromolecular Rapid Communications, 2009,30(6):430-434.
[59] 陈辉, 朱鸿杰 . 生物传感器研究进展. 河北农业科学, 2010,14(9):149-151.
Chen H, Zhu H J . Research progress of biosensor. Journal of Hebei Agricultural Sciences, 2010,14(9):149-151.
[60] Zhang X, Guan Y, Zhang Y J . Ultrathin hydrogel films for rapid optical biosensing. Biomacromolecules, 2012,13(1):92-97.
[61] Beyer A, Pollok S, Rudloff A , et al. Fast-track, one-step E. coli detection: a miniaturized hydrogel array permits specific direct PCR and DNA hybridization while amplification. Macromolecular Bioscience, 2016,16(9):1325-1333.
[62] Zhang L, Lei J P, Liu L , et al. Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Analytical Chemistry, 2013,85(22):11077-11082.
[63] Dave N, Chan M Y, Huang P J , et al. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. Journal of the American Chemical Society, 2010,132(36):12668-12673
[64] 丁陈君 . 生物成像技术发展态势分析. 世界科技研究与发展, 2018,40(4):368-375.
Ding C J . Analysis on development trend of biology imaging technology. World Sci-Tech R & D, 2018,40(4):368-375.
[65] 蒲源, 王丹, 钱骏 , 等. 荧光纳米材料及其生物成像应用. 中国材料进展, 2017,36(2):103-111.
Pu Y, Wang D, Qian J , et al. Fluorescent nanomaterials and their applications in bioimaging. Materials China, 2017,36(2):103-111.
[66] Meng X D, Zhang K, Dai W H , et al. Multiplex microRNA imaging in living cells using DNA-capped-Au assembled hydrogels. Chemical Science, 2018,9(37):7419-7425.
[67] Jiang H L, Kim Y K, Lee S M , et al. Galactosylated chitosan-g-PEI/DNA complexes-loaded poly(organophosphazene) hydrogel as a hepatocyte targeting gene delivery system. Archives of Pharmacal Research, 2010,33(4):551-556.
[68] Kang H Z, Liu H P, Zhang X L , et al. Photoresponsive DNA-crosslinked hydrogels for controllable release and cancer therapy. NIH Public Access Author Manuscript, 2012,27(1), 399-408.
[69] 魏玉雪, 刘晓秋, 李迪 , 等. 3D打印技术在细胞打印方面的应用与发展. 海南医学, 2017,28(5):801-804.
Wei Y X, Liu X Q, Li D , et al. Application and development of 3D printing technology in cell printing. Hainan Medical Journal, 2017,28(5):801-804.
[70] Li C, Jones A F, Dun A R , et al. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angewandte Chemie, 2015,127(13):4029-4040.
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[3] 唐梦童,王兆官,李娇娇,齐浩. 末端脱氧核苷酸转移酶在生物传感及核酸合成领域的应用*[J]. 中国生物工程杂志, 2021, 41(5): 51-64.
[4] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[5] 连将儒,马伟芳. DNA水凝胶应用于环境样品快速检测的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 107-115.
[6] 张正燕,陈钰,宋丽杰,苏政权,张海燕. 场效应晶体管生物传感器在生物医学检测中的应用研究进展*[J]. 中国生物工程杂志, 2021, 41(10): 73-88.
[7] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[8] 郝晓婷,刘俊杰,邓玉林,张永谦. 基于SOS反应及氧化应激反应相关启动子的辐射生物传感器研究 *[J]. 中国生物工程杂志, 2020, 40(7): 30-40.
[9] 李航,王彤. 克服硅纳米线场效应管生物传感器德拜屏蔽效应的研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 112-116.
[10] 易喻, 王敏君, 梅建凤, 陈建澍, 张彦璐, 应国清. 细菌内毒素电化学生物传感器的构建及性能表征[J]. 中国生物工程杂志, 2017, 37(8): 46-50.
[11] 温国霞, 黄子豪, 谭俊杰, 阚乃鹏, 凌婧怡, 张霞, 刘刚, 陈惠鹏. 以大肠杆菌为底盘细胞构建XylR-Pu线路检测2,4,6-三硝基甲苯[J]. 中国生物工程杂志, 2017, 37(7): 105-114.
[12] 吴剑荣,彭星桥,詹晓北. 聚唾液酸,一种非GAGs、非免疫原性生物材料的应用研究进展 *[J]. 中国生物工程杂志, 2017, 37(12): 96-102.
[13] 沈婷婷, 张光亚. 智能多肽的自组装机理及其生物学应用[J]. 中国生物工程杂志, 2014, 34(5): 87-91.
[14] 董茂盛, 王佃亮. 生物支架材料——组织工程连载之二[J]. 中国生物工程杂志, 2014, 34(06): 122-127.
[15] 王德平. “十一五”863计划“纳米生物材料研发”重点项目课题布局及实施情况分析[J]. 中国生物工程杂志, 2012, 32(10): 135-138.