Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (2/3): 43-53    DOI: 10.13523/j.cb.2209028
新型药物递送系统研发与应用专题     
高分子纳米材料用于口服胰岛素递送体系*
马品品,熊向源**()
江西科技师范大学生命科学学院 南昌 330013
Polymeric Nanomaterials Used in Oral Insulin Delivery Systems
MA Pin-pin,XIONG Xiang-yuan**()
College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
 全文: PDF(2598 KB)   HTML
摘要:

皮下注射胰岛素是控制血糖水平最有效的方法,在1型和晚期2型糖尿病患者的治疗中起着至关重要的作用。然而频繁的皮下注射给患者带来了极大的痛苦,因此,针对糖尿病的治疗,目前更倾向采用口服疗法。口服胰岛素可以模拟生理胰岛素的分泌,并对肝脏葡萄糖代谢提供更全面的调节,但胃肠道的吸收不良极大地阻碍了胰岛素口服给药的发展。纳米药物递送系统(nanoscale drug delivery systems,NDDS)的快速发展增加了胰岛素口服给药的可能性。高分子纳米材料是NDDS中一类重要的载体材料,已被广泛用于促进胰岛素口服吸收的研究。它具有生物降解性、生物相容性和储存稳定性等优点,并且其分子链长易于改性、修饰和加工成型。高分子纳米材料可以保护包裹的胰岛素不受酸性变性和酶降解的影响,促进细胞对胰岛素的摄取,从而提高胰岛素的生物利用度。讨论了口服胰岛素的主要生理障碍,总结了近几年用于口服胰岛素递送的高分子纳米材料的研究进展。

关键词: 糖尿病高分子纳米粒子药物递送系统口服胰岛素    
Abstract:

Subcutaneous insulin is the most effective way to control blood sugar levels and plays a crucial role in the treatment of patients with type I and advanced type II diabetes. However, frequent subcutaneous injections bring great pain to patients, so for the treatment of diabetes, oral therapy is preferred at present. Oral insulin can mimic physiological insulin secretion and provide more comprehensive regulation of hepatic glucose metabolism, but the development of oral insulin administration is greatly hampered by gastrointestinal malabsorption. The rapid development nanoscale drug delivery systems (NDDS) of has increased the possibility of oral insulin. Polymeric nanomaterials are important carrier materials in NDDS, which have been widely used to promote oral insulin absorption. They have the advantages of biodegradability, biocompatibility and storage stability, and their molecular chain is long and the structure is easy to be changed, modified and processed. The polymeric nanomaterials can protect the encapsulated insulin from the effects of acid denaturation and enzymatic degradation, promote the uptake of insulin by cells, and thus improve the bioavailability of insulin. This review discusses the main physiological obstacles to oral insulin and summarizes the research progress of polymer nanomaterials for oral insulin delivery in recent years.

Key words: Diabetes mellitus    Polymeric nanoparticles    Drug delivery systems    Oral insulin
收稿日期: 2022-09-14 出版日期: 2023-03-31
ZTFLH:  Q819  
基金资助: *江西省自然科学基金重点项目(20212ACB206003)
通讯作者: **熊向源     E-mail: xy.xiong@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马品品
熊向源

引用本文:

马品品, 熊向源. 高分子纳米材料用于口服胰岛素递送体系*[J]. 中国生物工程杂志, 2023, 43(2/3): 43-53.

MA Pin-pin, XIONG Xiang-yuan. Polymeric Nanomaterials Used in Oral Insulin Delivery Systems. China Biotechnology, 2023, 43(2/3): 43-53.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209028        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I2/3/43

图1  包埋胰岛素的纳米囊泡的结构及其降血糖效果
图2  PEG-b-P(Asp-co-AspPBA)/ P(Asp-co-AspGA-co-AspNTA复合胶束负载[32]
图3  Glu-APD在模拟胃肠道环境中保护胰岛素稳定药物释放
图4  壳聚糖-胰岛素电喷雾纳米球(CIN)注射液与胰岛素释放的原理图[39]
图5  肠道淀粉酶导致纳米水凝胶中聚合物网络的降解[9]
类型 纳米材料载体 策略 克服屏障
聚合物囊泡 FA-P85-PLGA[26] 叶酸受体介导的靶向聚合体的内吞作用 胃酸屏障
mPEG-PolyMet[27] 模拟葡萄糖应答性分泌 胃酸屏障
PS@ins/GOx[28] 多水平血糖自我调节功能的葡萄糖和pH双响应型胰岛素给药 胃酸屏障
聚合物胶束 NCs[30] 模拟纳米分子伴侣 胃酸屏障
DSPE-PCB[31] 模拟病毒的两性离子表面、甜菜碱侧链和超低临界胶束浓度 肠道屏障
CM[32] 葡萄糖响应性 胃酸屏障
树枝状聚合物 G2-AC6[34] PAMAM吸收促进剂 肠道屏障
ICPD[35] PPI树枝状大分子的聚乙二醇化 胃酸屏障
Glu-APD[36] 树枝状低聚肽 肠道屏障
纳米球 CIN[39] 壳聚糖-胰岛素电喷雾纳米球 胃酸屏障
PLGA纳米粒[40] 在酸性介质中对胰岛素的释放具有保护作用 胃酸屏障
INS-TMC-PLGA[41] TCM受体介导的靶向聚合体PLGA纳米粒的内吞作用 胃酸屏障、肠道屏障
纳米凝胶 CS/INS/HS[9] pH-淀粉酶响应型水凝胶 胃酸屏障
InF12-Tre2[44] pH敏感型纳米凝胶 胃酸屏障
P(NIPAM-co-Dex-co-
DDOPBA)[45]
葡萄糖敏感纳米凝胶 胃酸屏障
表1  高分子纳米材料递送胰岛素策略
[1] International Diabetes Federation. IDF Diabetes Atlas, 10th ed. [2022-04-21]. https://www.diabetesatlas.org.
[2] Despins L A, Wakefield B J. Making sense of blood glucose data and self-management in individuals with type 2 diabetes mellitus: a qualitative study. Journal of Clinical Nursing, 2020, 29(13-14): 2572-2588.
doi: 10.1111/jocn.15280 pmid: 32279366
[3] Suplotova L A, Sudnitsyna A S, Romanova N V. Analysis of the quality of life of patients with type 1 diabetes mellitus in real clinical practice who received insulin degludec. Meditsinskiy Sovet, 2021(14): 96-103.
[4] Chen G Y, Kang W R, Li W Q, et al. Oral delivery of protein and peptide drugs: from non-specific formulation approaches to intestinal cell targeting strategies. Theranostics, 2022, 12(3): 1419-1439.
doi: 10.7150/thno.61747 pmid: 35154498
[5] Park H, Otte A, Park K. Evolution of drug delivery systems: from 1950 to 2020 and beyond. Journal of Controlled Release, 2022, 342: 53-65.
doi: 10.1016/j.jconrel.2021.12.030
[6] Cui Z X, Qin L, Guo S, et al. Design of biotin decorated enterocyte targeting muco-inert nano complexes for enhanced oral insulin delivery. Carbohydrate Polymers, 2021, 261: 117873.
doi: 10.1016/j.carbpol.2021.117873
[7] Jiang W X, Chen L, Guo X, et al. Combating multidrug resistance and metastasis of breast cancer by endoplasmic reticulum stress and cell-nucleus penetration enhanced immunochemotherapy. Theranostics, 2022, 12(6): 2987-3006.
doi: 10.7150/thno.71693 pmid: 35401832
[8] Cheng H B, Cui Z X, Guo S, et al. Mucoadhesive versus mucopenetrating nanoparticles for oral delivery of insulin. Acta Biomaterialia, 2021, 135: 506-519.
doi: 10.1016/j.actbio.2021.08.046 pmid: 34487859
[9] Liu L, Zhang Y, Yu S J, et al. Dual stimuli-responsive nanoparticle-incorporated hydrogels as an oral insulin carrier for intestine-targeted delivery and enhanced paracellular permeation. ACS Biomaterials Science & Engineering, 2018, 4(8): 2889-2902.
[10] Banerjee A, Ibsen K, Brown T, et al. Ionic liquids for oral insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7296-7301.
[11] Seyam S, Nordin N A, Alfatama M. Recent progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals (Basel, Switzerland), 2020, 13(10): 307.
[12] Xu Z Y, Chen L, Duan X Y, et al. Microparticles based on alginate/chitosan/casein three-dimensional system for oral insulin delivery. Polymers for Advanced Technologies, 2021, 32(11): 4352-4361.
doi: 10.1002/pat.v32.11
[13] Fu Y, Sun Y X, Chen M, et al. Glycopolymer nanoparticles with on-demand glucose-responsive insulin delivery and low-hypoglycemia risks for type 1 diabetic treatment. Biomacromolecules, 2022, 23(3): 1251-1258.
doi: 10.1021/acs.biomac.1c01496
[14] Zhou Y H, Liu L, Cao Y, et al. A nanocomposite vehicle based on metal-organic framework nanoparticle incorporated biodegradable microspheres for enhanced oral insulin delivery. ACS Applied Materials & Interfaces, 2020, 12(20): 22581-22592.
[15] Kumari Y, Singh S K, Kumar R, et al. Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. International Journal of Biological Macromolecules, 2020, 149: 976-988.
doi: S0141-8130(19)39044-0 pmid: 32018009
[16] Huang Q, Yu H J, Wang L, et al. Synthesis and testing of polymer grafted mesoporous silica as glucose-responsive insulin release drug delivery systems. European Polymer Journal, 2021, 157: 110651.
doi: 10.1016/j.eurpolymj.2021.110651
[17] Pauletti G M, Gangwar S, Knipp G T, et al. Structural requirements for intestinal absorption of peptide drugs. Journal of Controlled Release, 1996, 41(1-2): 3-17.
doi: 10.1016/0168-3659(96)01352-1
[18] Evans D F, Pye G, Bramley R, et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut, 1988, 29(8): 1035-1041.
pmid: 3410329
[19] Saeed S, Irfan M, Naz S, et al. Routes and barriers associated with protein and peptide drug delivery system. JPMA the Journal of the Pakistan Medical Association, 2021, 71(8): 2032-2039.
[20] Cheng H, Leblond C P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. The American Journal of Anatomy, 1974, 141(4): 503-519.
doi: 10.1002/(ISSN)1553-0795
[21] Sonia T A, Sharma C P. An overview of natural polymers for oral insulin delivery. Drug Discovery Today, 2012, 17(13-14): 784-792.
doi: 10.1016/j.drudis.2012.03.019 pmid: 22521664
[22] Li S Y, Qin T T, Chen T T, et al. Poly(vinyl alcohol)/poly(hydroxypropyl methacrylate-co-methacrylic acid) as pH-sensitive semi-IPN hydrogels for oral insulin delivery: preparation and characterization. Iranian Polymer Journal, 2021, 30(4): 343-353.
doi: 10.1007/s13726-020-00893-7
[23] Volpatti L R, Matranga M A, Cortinas A B, et al. Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano, 2020, 14(1): 488-497.
doi: 10.1021/acsnano.9b06395 pmid: 31765558
[24] Xi Z Y, Ahmad E, Zhang W, et al. Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2022, 342: 1-13.
doi: 10.1016/j.jconrel.2021.11.045
[25] Xiong X Y, Li Y P, Li Z L, et al. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. Journal of Controlled Release, 2007, 120(1-2): 11-17.
pmid: 17509718
[26] Xie S, Gong Y C, Xiong X Y, et al. Targeted folate-conjugated pluronic P85/poly(lactide-co-glycolide) polymersome for the oral delivery of insulin. Nanomedicine (London, England), 2018, 13(19): 2527-2544.
doi: 10.2217/nnm-2017-0372
[27] Wang A H, Fan W W, Yang T T, et al. Liver-target and glucose-responsive polymersomes toward mimicking endogenous insulin secretion with improved hepatic glucose utilization. Advanced Functional Materials, 2020, 30(13): 1910168.
doi: 10.1002/adfm.v30.13
[28] Zhou D X, Li S Y, Fei Z X, et al. Glucose and pH dual-responsive polymersomes with multilevel self-regulation of blood glucose for insulin delivery. Biomacromolecules, 2021, 22(9): 3971-3979.
doi: 10.1021/acs.biomac.1c00772 pmid: 34423981
[29] Lee S W, Kim Y M, Cho C H, et al. An open-label, randomized, parallel, phase II trial to evaluate the efficacy and safety of a cremophor-free polymeric micelle formulation of paclitaxel as first-line treatment for ovarian cancer: a Korean gynecologic oncology group study (KGOG-3021). Cancer Research and Treatment, 2018, 50(1): 195-203.
doi: 10.4143/crt.2016.376
[30] Li C, Liu X Y, Zhang Y L, et al. Nanochaperones mediated delivery of insulin. Nano Letters, 2020, 20(3): 1755-1765.
doi: 10.1021/acs.nanolett.9b04966 pmid: 32069419
[31] Han X F, Lu Y, Xie J B, et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nature Nanotechnology, 2020, 15(7): 605-614.
doi: 10.1038/s41565-020-0693-6 pmid: 32483319
[32] Li C, Wu G, Ma R J, et al. Nitrilotriacetic acid (NTA) and phenylboronic acid (PBA) functionalized nanogels for efficient encapsulation and controlled release of insulin. ACS Biomaterials Science & Engineering, 2018, 4(6): 2007-2017.
[33] Cao S J, Xu S, Wang H M, et al. Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech, 2019, 20(5): 190.
doi: 10.1208/s12249-019-1325-z
[34] Yan C Y, Gu J W, Lv Y G, et al. Caproyl-modified G2 PAMAM dendrimer (G2-AC) nano complexes increases the pulmonary absorption of insulin. AAPS PharmSciTech, 2019, 20(7): 298.
doi: 10.1208/s12249-019-1505-x
[35] Parashar A K, Patel P, Gupta A K, et al. Synthesis, characterization and in vivo Evaluation of PEGylated PPI dendrimer for safe and prolonged delivery of insulin. Drug Delivery Letters, 2019, 9(3): 248-263.
doi: 10.2174/2210303109666190401231920
[36] Bai Y L, Zhou R, Wu L, et al. Nanoparticles with surface features of dendritic oligopeptides as potential oral drug delivery systems. Journal of Materials Chemistry B, 2020, 8(13): 2636-2649.
doi: 10.1039/c9tb02860a pmid: 32129375
[37] Dan N, Samanta K, Almoazen H. An update on pharmaceutical strategies for oral delivery of therapeutic peptides and proteins in adults and pediatrics. Children (Basel, Switzerland), 2020, 7(12): 307.
[38] Bednarikova Z, Antal I, Kubovcikova M, et al. Modified polymer nanospheres:characterization and their anti-amyloid activity to insulin amyloid aggregation. Journal of Magnetism and Magnetic Materials, 2021, 521: 167527.
doi: 10.1016/j.jmmm.2020.167527
[39] Trinh T A, Le T M D, Ho H G V, et al. A novel injectable pH-temperature sensitive hydrogel containing chitosan-insulin electrosprayed nanosphere composite for an insulin delivery system in type I diabetes treatment. Biomaterials Science, 2020, 8(14): 3830-3843.
doi: 10.1039/d0bm00634c pmid: 32538381
[40] Jaradat A, Macedo M H, Sousa F, et al. Prediction of the enhanced insulin absorption across a triple co-cultured intestinal model using mucus penetrating PLGA nanoparticles. International Journal of Pharmaceutics, 2020, 585: 119516.
doi: 10.1016/j.ijpharm.2020.119516
[41] Fang Y, Wang Q, Lin X J, et al. Gastrointestinal responsive polymeric nanoparticles for oral delivery of insulin: optimized preparation, characterization, and in vivo evaluation. Journal of Pharmaceutical Sciences, 2019, 108(9): 2994-3002.
doi: S0022-3549(19)30253-9 pmid: 31047941
[42] Gabriel T, Belete A, Hause G, et al. Nanocellulose-based nanogels for sustained drug delivery: preparation, characterization and in vitro evaluation. Journal of Drug Delivery Science and Technology, 2022, 75: 103665.
doi: 10.1016/j.jddst.2022.103665
[43] Ahmed S, Alhareth K, Mignet N. Advancement in nanogel formulations provides controlled drug release. International Journal of Pharmaceutics, 2020, 584: 119435.
doi: 10.1016/j.ijpharm.2020.119435
[44] Mudassir J, Darwis Y, Muhamad S, et al. Self-assembled insulin and nanogels polyelectrolyte complex (Ins/NGs-PEC) for oral insulin delivery: characterization, lyophilization and in-vivo evaluation. International Journal of Nanomedicine, 2019, 14: 4895-4909.
doi: 10.2147/IJN
[45] Elshaarani T, Yu H J, Wang L, et al. Dextran-crosslinked glucose responsive nanogels with a self-regulated insulin release at physiological conditions. European Polymer Journal, 2020, 125: 109505.
doi: 10.1016/j.eurpolymj.2020.109505
[1] 韩佳, 张博文, 毛开云. 新型药物递送系统研发格局分析*[J]. 中国生物工程杂志, 2023, 43(2/3): 1-14.
[2] 文小虎, 马诗文, 姜世豪, 党政, 赵鹏翔. 应用于糖尿病溃疡的载药静电纺丝敷料研究进展*[J]. 中国生物工程杂志, 2023, 43(2/3): 54-63.
[3] 赵冰,麻淳博,孙冰冰,赵海洋. 智能胰岛素递送系统用于糖尿病治疗的研究进展[J]. 中国生物工程杂志, 2022, 42(5): 81-90.
[4] 甘巧, 孟庆雄. 肠道菌群及其代谢产物与T2DM发病机制及干预措施*[J]. 中国生物工程杂志, 2022, 42(3): 62-71.
[5] 刘嘉, 严宝飞, 张景正, 马宇霆, 田朝晖, 曾庆琪. 黄芩汤对糖尿病肾病大鼠肾脏NF-κB/NLRP3/Caspase-1细胞焦亡通路的影响*[J]. 中国生物工程杂志, 2022, 42(11): 109-116.
[6] 张杰, 林炳锋, 许平翠, 王娜妮, 陈郁. 麦冬提取物治疗2型糖尿病小鼠的血清代谢组学研究*[J]. 中国生物工程杂志, 2022, 42(11): 99-108.
[7] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[8] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[9] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[10] 冯琳晶,于洋,杜红伟. FoxO1在胰岛β细胞代谢灵活性受损及失代偿进程中的作用 *[J]. 中国生物工程杂志, 2018, 38(6): 70-76.
[11] 党诗莹,马义,文涛,肖兴,洪岸. 纳米复合肽SCM的制备及其对II型糖尿病治疗作用的研究 *[J]. 中国生物工程杂志, 2018, 38(5): 17-23.
[12] 颜秋霞,马义,洪岸. PACAP及其衍生物治疗糖尿病及其并发症的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 62-68.
[13] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.
[14] 王得华, 马义, 韩磊, 肖兴, 李艳伟, 党诗莹, 范志勇, 文涛, 洪岸. 新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究[J]. 中国生物工程杂志, 2017, 37(5): 59-65.
[15] 马义, 罗天杰, 洪岸. 新型重组VPAC2激动剂RD的制备及促进胰岛素功能的分子机制[J]. 中国生物工程杂志, 2014, 34(11): 60-66.