Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (12): 91-100    DOI: 10.13523/j.cb.2204068
综述     
解脂耶氏酵母基于木质纤维素原料生产化学品研究进展*
王露鑫1,2,房立霞1,陈雅如1,李孟旭1,牛小龙1,2,宋浩1,2,曹英秀1,**()
1 天津大学化工学院 教育部合成生物学前沿科学中心 系统生物工程教育部重点实验室 天津 300072
2 天津大学青岛海洋工程技术研究院 青岛 266237
Advances in the Production of Chemicals from Lignocellulosic Material by Yarrowia lipolytica
WANG Lu-xin1,2,FANG Li-xia1,CHEN Ya-ru1,LI Meng-xu1,NIU Xiao-long1,2,SONG Hao1,2,CAO Ying-xiu1,**()
1 Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2 Qingdao Institute for Ocean Engineering of Tianjin University, Qingdao 266237, China
 全文: PDF(1193 KB)   HTML
摘要:

解脂耶氏酵母具有遗传背景清晰、分子操作体系较为成熟、抗逆性强、底物谱广、有机酸和蛋白质分泌能力强等优点,在微生物发酵生产化学品领域极具应用潜力。木质纤维素是丰富的可再生生物质资源,以木质纤维素原料替代化石原料生产化学品对于缓解全球能源危机、保障粮食安全等意义重大。解脂耶氏酵母可以天然代谢木质纤维素水解产生的葡萄糖,但对其他水解产物(如木糖)的利用效率极低。综述解脂耶氏酵母利用木质纤维素原料的代谢途径及改造策略,以木质纤维素原料生产化学品为例,重点讨论该过程中的主要瓶颈问题及解决办法,为后续研究提供参考。

关键词: 解脂耶氏酵母木质纤维素木糖代谢工程    
Abstract:

Yarrowia lipolytica has great application potential in the field of microbial fermentation of chemicals due to its clear genetic background, relatively mature molecular manipulation system, strong stress resistance, broad substrate spectrum, and strong organic acid and protein secretion capabilities. Lignocellulose is the most abundant renewable biomass resource on the earth, and the use of lignocellulose materials to replace fossil materials to produce chemicals is of great significance in alleviating global energy crisis and ensuring food security. Y. lipolytica can naturally metabolize glucose produced by hydrolysis of lignocellulose. However, the utilization efficiency of other hydrolysis products such as xylose is extremely low. This article reviews the metabolic pathways and engineering strategies of Y. lipolytica using lignocellulosic materials, as well as examples of using lignocellulosic materials to produce chemicals, and focuses on the bottlenecks in this process. The solutions to these bottlenecks were also discussed, with the aim to provide useful information for relevant studies in this field.

Key words: Yarrowia lipolytica    Lignocellulose    Xylose    Metabolic engineering
收稿日期: 2022-04-26 出版日期: 2023-01-05
ZTFLH:  Q939  
基金资助: *国家重点研发计划(2021YFC2104400);国家自然科学基金(22078240);天津市自然科学基金(19JCQNJC09200);天津市青年人才托举工程资助项目(TJSQNTJ-2018-16)
通讯作者: 曹英秀     E-mail: caoyingxiu@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王露鑫
房立霞
陈雅如
李孟旭
牛小龙
宋浩
曹英秀

引用本文:

王露鑫,房立霞,陈雅如,李孟旭,牛小龙,宋浩,曹英秀. 解脂耶氏酵母基于木质纤维素原料生产化学品研究进展*[J]. 中国生物工程杂志, 2022, 42(12): 91-100.

WANG Lu-xin,FANG Li-xia,CHEN Ya-ru,LI Meng-xu,NIU Xiao-long,SONG Hao,CAO Ying-xiu. Advances in the Production of Chemicals from Lignocellulosic Material by Yarrowia lipolytica. China Biotechnology, 2022, 42(12): 91-100.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2204068        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I12/91

图1  木质纤维素中糖的种类
图2  工程化解脂耶氏酵母降解纤维素过程
图3  解脂耶氏酵母利用纤维素、葡萄糖、木糖、半乳糖、阿拉伯糖、乙酸盐的代谢途径以及有机酸、脂质、萜烯类化学品合成路径
化学品 原料 菌株 遗传修饰 产量 参考文献
柠檬酸 纤维素 SWJ-1b - 42.4 g/L [32]
柠檬酸 半乳糖 Y4588 gal1gal7gal10mgal10e 29.2 g/L [49]
柠檬酸 半乳糖 Y4779 Δmfe2gpd1dga1hxk1yht3suc2inu1 23 g/L [65]
柠檬酸 纤维二糖 Po1f-BC cdt-1gh1-1 5.1 g/L [28]
柠檬酸 木糖 XYL+Obese Δpox1-6Δtgl4gpd1dga2xyl1xyl2xyl3 80 g/L [37]
α-酮戊二酸 纤维素 Y. lipolytica - 8.33 g/L [29]
琥珀酸 木糖 PSA02004PP xyl1xyl2xyl3 11.2 g/L [38]
琥珀酸 木糖/葡萄糖 PSA02004 - 28.2 g/L [40]
脂质 纤维素 CYLpO bgl1bgl2eg1eg2cbh1cbh2scd1dga1 19 g/L [31]
脂质 纤维素 YL163t acl dga1 snf1::cbh1-cbh2-eg2 32 mg/g avicel [66]
脂质 半乳糖 Y4588 gal1gal7gal10mgal10e 3.22 g/L [49]
脂质 半乳糖 YLZ150 Δtgl4Δpox1-6gpd1dga2hxk1gal1gal7gal10mgal10esuc2inu1 23.82 g/L [65]
脂质 木糖 E26 XUS xyl1xyl2 15.06 g/L [42]
脂质 纤维素水解液 ylXYL+Obese-XA Δpox1-6Δtgl4gpd1dga2xyl1xyl2xyl3xpkaack 16.5 g/L [67]
脂质 木糖 YSXID Δpex10::dga1 xylAxk 12.01 g/L [68]
脂质 木糖 XYL+Obese Δpox1-6Δtgl4gpd1dga2xyl1xyl2xyl3 20.1 g/L [37]
脂质 木糖/甘油 XYL+Obese Δpox1-6Δtgl4gpd1dga2xyl1xyl2xyl3 50.5 g/L [37]
脂质 Acetate/甘油 PO1f-acsSP-acc1-fas2-1 acsSPacc1SPfas2-2SP 41.72% [53]
脂质 乙酸盐/乙酸 MTYL065 acc1dga1 115 g/L [54]
柠檬烯 木糖/葡萄糖 YBX08 xyl1xyl2xyl3tlstndpshmg1erg12 19.4 mg/L [43]
原人参二醇 木糖 Y14 xyl1xyl2xyl3dsppds-linker-atr1tHMG1erg9erg20tkltaltx 300.63 mg/L [44]
表1  解脂耶氏酵母利用木质纤维素原料生产化学品
[1] Gu Y, Xu P. Synthetic yeast brews neuroactive compounds. Nature Chemical Biology, 2021, 17(1): 8-9.
doi: 10.1038/s41589-020-00691-5 pmid: 33116303
[2] Liu H H, Ji X J, Huang H. Biotechnological applications of Yarrowia lipolytica: past, present and future. Biotechnology Advances, 2015, 33(8): 1522-1546.
doi: 10.1016/j.biotechadv.2015.07.010 pmid: 26248319
[3] Shi T Q, Huang H, Kerkhoven E J, et al. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Applied Microbiology and Biotechnology, 2018, 102(22): 9541-9548.
doi: 10.1007/s00253-018-9366-x
[4] Dobrowolski A, Drzymała K, Mituła P, et al. Production of tailor-made fatty acids from crude glycerol at low pH by Yarrowia lipolytica. Bioresource Technology, 2020, 314: 123746.
doi: 10.1016/j.biortech.2020.123746
[5] Gonçalves F A G, Colen G, Takahashi J A. Yarrowia lipolytica and its multiple applications in the biotechnological industry. The Scientific World Journal, 2014, 2014: 476207.
[6] Spagnuolo M, Shabbir Hussain M, Gambill L, et al. Alternative substrate metabolism in Yarrowia lipolytica. Frontiers in Microbiology, 2018, 9: 1077.
doi: 10.3389/fmicb.2018.01077 pmid: 29887845
[7] Zinjarde S S. Food-related applications of Yarrowia lipolytica. Food Chemistry, 2014, 152: 1-10.
doi: 10.1016/j.foodchem.2013.11.117 pmid: 24444899
[8] Park Y K, Nicaud J M. Metabolic engineering for unusual lipid production in Yarrowia lipolytica. Microorganisms, 2020, 8(12): 1937.
doi: 10.3390/microorganisms8121937
[9] Gao Q, Cao X, Huang Y Y, et al. Overproduction of fatty acid ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimization. ACS Synthetic Biology, 2018, 7(5): 1371-1380.
doi: 10.1021/acssynbio.7b00453 pmid: 29694786
[10] Xu P, Qiao K J, Stephanopoulos G. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnology and Bioengineering, 2017, 114(7): 1521-1530.
doi: 10.1002/bit.26285
[11] Carsanba E, Papanikolaou S, Fickers P, et al. Screening various Yarrowia lipolytica strains for citric acid production. Yeast, 2019, 36(5): 319-327.
doi: 10.1002/yea.3389
[12] Billerach G, Preziosi-Belloy L, Lin C S K, et al. Impact of nitrogen deficiency on succinic acid production by engineered strains of Yarrowia lipolytica. Journal of Biotechnology, 2021, 336: 30-40.
doi: 10.1016/j.jbiotec.2021.06.001
[13] Zhang J L, Cao Y X, Peng Y Z, et al. High production of fatty alcohols in Yarrowia lipolytica by coordination with glycolysis. Science China Chemistry, 2019, 62(8): 1007-1016.
doi: 10.1007/s11426-019-9456-y
[14] Magdouli S, Guedri T, Tarek R, et al. Valorization of raw glycerol and crustacean waste into value added products by Yarrowia lipolytica. Bioresource Technology, 2017, 243: 57-68.
doi: S0960-8524(17)30978-1 pmid: 28651139
[15] Madzak C, Gaillardin C, Beckerich J M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. Journal of Biotechnology, 2004, 109(1-2): 63-81.
doi: 10.1016/j.jbiotec.2003.10.027
[16] Martino A, Pifferi P G, Spagna G. Production of β-glucosidase by Aspergillus niger using carbon sources derived from agricultural wastes. Journal of Chemical Technology & Biotechnology, 1994, 60(3): 247-252.
[17] Sarker T R, Pattnaik F, Nanda S, et al. Hydrothermal pretreatment technologies for lignocellulosic biomass: a review of steam explosion and subcritical water hydrolysis. Chemosphere, 2021, 284: 131372.
doi: 10.1016/j.chemosphere.2021.131372
[18] Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 2009, 100(1): 10-18.
doi: 10.1016/j.biortech.2008.05.027 pmid: 18599291
[19] Xiong Q, Qiao J, Wang M H, et al. Carboxylated and quaternized lignin enhanced enzymatic hydrolysis of lignocellulose treated by p-toluenesulfonic acid due to improving enzyme activity. Bioresource Technology, 2021, 337: 125465.
doi: 10.1016/j.biortech.2021.125465
[20] Michely S, Gaillardin C, Nicaud J M, et al. Comparative physiology of oleaginous species from the Yarrowia clade. PLoS One, 2013, 8(5): e63356.
doi: 10.1371/journal.pone.0063356
[21] Celińska E, Nicaud J M, Białas W. Hydrolytic secretome engineering in Yarrowia lipolytica for consolidated bioprocessing on polysaccharide resources: review on starch, cellulose, xylan, and inulin. Applied Microbiology and Biotechnology, 2021, 105(3): 975-989.
doi: 10.1007/s00253-021-11097-1 pmid: 33447867
[22] Sun T, Yu Y Z, Wang K F, et al. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: a review. Bioresource Technology, 2021, 337: 125484.
doi: 10.1016/j.biortech.2021.125484
[23] de Paula R G, Antoniêto A C C, Ribeiro L F C, et al. Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnology Advances, 2019, 37(6): 107347.
doi: 10.1016/j.biotechadv.2019.02.003
[24] van Zyl W H, Lynd L R, den Haan R, et al. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Advances in Biochemical Engineering/Biotechnology, 2007, 108: 205-235.
[25] Olson D G, McBride J E, Shaw A J, et al. Recent progress in consolidated bioprocessing. Current Opinion in Biotechnology, 2012, 23(3): 396-405.
doi: 10.1016/j.copbio.2011.11.026 pmid: 22176748
[26] Guo Z P, Duquesne S, Bozonnet S, et al. Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes. Biotechnology for Biofuels, 2015, 8: 109.
doi: 10.1186/s13068-015-0289-9
[27] Schwartz C, Curtis N, Löbs A K, et al. Multiplexed CRISPR activation of cryptic sugar metabolism enables Yarrowia lipolytica growth on cellobiose. Biotechnology Journal, 2018, 13(9): e1700584.
[28] Lane S, Zhang S Y, Wei N, et al. Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica. Biotechnology and Bioengineering, 2015, 112(5): 1012-1022.
doi: 10.1002/bit.25499
[29] Ryu S, Labbé N, Trinh C T. Simultaneous saccharification and fermentation of cellulose in ionic liquid for efficient production of α-ketoglutaric acid by Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2015, 99(10): 4237-4244.
doi: 10.1007/s00253-015-6521-5
[30] Wei H, Wang W, Alper H S, et al. Ameliorating the metabolic burden of the co-expression of secreted fungal cellulases in a high lipid-accumulating Yarrowia lipolytica strain by medium C/N ratio and a chemical chaperone. Frontiers in Microbiology, 2019, 9: 3276.
doi: 10.3389/fmicb.2018.03276
[31] Guo Z P, Robin J, Duquesne S, et al. Developing cellulolytic Yarrowia lipolytica as a platform for the production of valuable products in consolidated bioprocessing of cellulose. Biotechnology for Biofuels, 2018, 11: 141.
doi: 10.1186/s13068-018-1144-6
[32] Liu X Y, Lv J S, Zhang T, et al. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation. Preparative Biochemistry & Biotechnology, 2015, 45(8): 825-835.
[33] Rodrigues A C, Leitão A F, Moreira S, et al. Recycling of cellulases in lignocellulosic hydrolysates using alkaline elution. Bioresource Technology, 2012, 110: 526-533.
doi: 10.1016/j.biortech.2012.01.140 pmid: 22357293
[34] Cardona C A, Quintero J A, Paz I C. Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresource Technology, 2010, 101(13): 4754-4766.
doi: 10.1016/j.biortech.2009.10.097 pmid: 19945863
[35] Abdel-Mawgoud A M, Markham K A, Palmer C M, et al. Metabolic engineering in the host Yarrowia lipolytica. Metabolic Engineering, 2018, 50: 192-208.
doi: S1096-7176(18)30273-8 pmid: 30056205
[36] van Dyk J S, Pletschke B I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnology Advances, 2012, 30(6): 1458-1480.
doi: 10.1016/j.biotechadv.2012.03.002
[37] Ledesma-Amaro R, Lazar Z, Rakicka M, et al. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metabolic Engineering, 2016, 38: 115-124.
doi: S1096-7176(16)30054-4 pmid: 27396355
[38] Prabhu A A, Ledesma-Amaro R, Lin C S K, et al. Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control. Biotechnology for Biofuels, 2020, 13: 113.
doi: 10.1186/s13068-020-01747-3
[39] Prabhu A A, Thomas D J, Ledesma-Amaro R, et al. Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica. Microbial Cell Factories, 2020, 19(1): 121.
doi: 10.1186/s12934-020-01378-1
[40] Ong K L, Li C, Li X T, et al. Co-fermentation of glucose and xylose from sugarcane bagasse into succinic acid by Yarrowia lipolytica. Biochemical Engineering Journal, 2019, 148: 108-115.
doi: 10.1016/j.bej.2019.05.004
[41] Ryu S, Hipp J, Trinh C T. Activating and elucidating metabolism of complex sugars in Yarrowia lipolytica. Applied and Environmental Microbiology, 2015, 82(4): 1334-1345.
doi: 10.1128/AEM.03582-15
[42] Li H B, Alper H S. Enabling xylose utilization in Yarrowia lipolytica for lipid production. Biotechnology Journal, 2016, 11(9): 1230-1240.
doi: 10.1002/biot.201600210
[43] Yao F, Liu S C, Wang D N, et al. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate. FEMS Yeast Research, 2020, 20(6): foaa046.
doi: 10.1093/femsyr/foaa046
[44] Wu Y F, Xu S, Gao X, et al. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica. Microbial Cell Factories, 2019, 18(1): 83.
doi: 10.1186/s12934-019-1136-7
[45] van Dyk J S, Pletschke B I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnology Advances, 2012, 30(6): 1458-1480.
doi: 10.1016/j.biotechadv.2012.03.002
[46] Fujiwara R, Noda S, Tanaka T, et al. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Nature Communications, 2020, 11: 279.
doi: 10.1038/s41467-019-14024-1 pmid: 31937786
[47] Meyer J, Walker-Jonah A, Hollenberg C P. Galactokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1991, 11(11): 5454-5461.
doi: 10.1128/mcb.11.11.5454-5461.1991 pmid: 1922058
[48] Sellick C A, Campbell R N, Reece R J. Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them. International Review of Cell and Molecular Biology, 2008, 269: 111-150.
doi: 10.1016/S1937-6448(08)01003-4 pmid: 18779058
[49] Lazar Z, Gamboa-Meléndez H, le Coq A M C, et al. Awakening the endogenous Leloir pathway for efficient galactose utilization by Yarrowia lipolytica. Biotechnology for Biofuels, 2015, 8: 185.
doi: 10.1186/s13068-015-0370-4
[50] Ryu S, Trinh C T. Understanding functional roles of native pentose-specific transporters for activating dormant pentose metabolism in Yarrowia lipolytica. Applied and Environmental Microbiology, 2018, 84(3): e02146-e02117.
[51] Mills T Y, Sandoval N R, Gill R T. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnology for Biofuels, 2009, 2: 26.
doi: 10.1186/1754-6834-2-26
[52] Lim H G, Lee J H, Noh M H, et al. Rediscovering acetate metabolism: its potential sources and utilization for biobased transformation into value-added chemicals. Journal of Agricultural and Food Chemistry, 2018, 66(16): 3998-4006.
doi: 10.1021/acs.jafc.8b00458 pmid: 29637770
[53] Chen L, Yan W, Qian X J, et al. Increased lipid production in Yarrowia lipolytica from acetate through metabolic engineering and cosubstrate fermentation. ACS Synthetic Biology, 2021, 10(11): 3129-3138.
doi: 10.1021/acssynbio.1c00405 pmid: 34714052
[54] Xu J Y, Liu N, Qiao K J, et al. Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): E5308-E5316.
[55] Sheng J Y, Feng X Y. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Frontiers in Microbiology, 2015, 6: 554.
doi: 10.3389/fmicb.2015.00554 pmid: 26106371
[56] Adrio J L. Oleaginous yeasts: promising platforms for the production of oleochemicals and biofuels. Biotechnology and Bioengineering, 2017, 114(9): 1915-1920.
doi: 10.1002/bit.26337 pmid: 28498495
[57] Ledesma-Amaro R, Nicaud J M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Progress in Lipid Research, 2016, 61: 40-50.
doi: 10.1016/j.plipres.2015.12.001 pmid: 26703186
[58] Fakas S. Lipid biosynthesis in yeasts: a comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Engineering in Life Sciences, 2017, 17(3): 292-302.
doi: 10.1002/elsc.201600040
[59] Xie D M. Integrating cellular and bioprocess engineering in the non-conventional yeast Yarrowia lipolytica for biodiesel production: a review. Frontiers in Bioengineering and Biotechnology, 2017, 5: 65.
doi: 10.3389/fbioe.2017.00065
[60] Lazar Z, Liu N, Stephanopoulos G. Holistic approaches in lipid production by Yarrowia lipolytica. Trends in Biotechnology, 2018, 36(11): 1157-1170.
doi: 10.1016/j.tibtech.2018.06.007
[61] Zhong Y H, Gao Y Z, Zhou D J, et al. Structural basis for the activity and regulation of human α-ketoglutarate dehydrogenase revealed by Cryo-EM. Biochemical and Biophysical Research Communications, 2022, 602: 120-126.
doi: 10.1016/j.bbrc.2022.02.093 pmid: 35272141
[62] Takkellapati S, Li T, Gonzalez M A. An overview of biorefinery derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technologies and Environmental Policy, 2018, 20(7): 1615-1630.
doi: 10.1007/s10098-018-1568-5 pmid: 30319323
[63] Nicaud J M. Yarrowia lipolytica. Yeast (Chichester, England), 29(10): 409-418.
doi: 10.1002/yea.2921
[64] Qian X J, Xu N, Jing Y W, et al. Valorization of crude glycerol into citric acid and malic acid by Yarrowia lipolytica. Industrial & Engineering Chemistry Research, 2020, 59(39): 17165-17172.
doi: 10.1021/acs.iecr.0c01723
[65] Hapeta P, Rakicka M, Dulermo R, et al. Transforming sugars into fat - lipid biosynthesis using different sugars in Yarrowia lipolytica. Yeast, 2017, 34(7): 293-304.
doi: 10.1002/yea.3232
[66] Wei H, Wang W, Knoshaug E P, et al. Disruption of the Snf1 gene enhances cell growth and reduces the metabolic burden in cellulase-expressing and lipid-accumulating Yarrowia lipolytica. Frontiers in Microbiology, 2021, 12: 757741.
doi: 10.3389/fmicb.2021.757741
[67] Niehus X, Crutz-Le Coq A M, Sandoval G, et al. Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnology for Biofuels, 2018, 11: 11.
doi: 10.1186/s13068-018-1010-6
[68] Yook S D, Kim J, Gong G, et al. High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica. GCB Bioenergy, 2020, 12(9): 670-679.
doi: 10.1111/gcbb.12699
[69] Beopoulos A, Chardot T, Nicaud J M. Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 2009, 91(6): 692-696.
doi: 10.1016/j.biochi.2009.02.004 pmid: 19248816
[70] Qiao K J, Wasylenko T M, Zhou K, et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature Biotechnology, 2017, 35(2): 173-177.
doi: 10.1038/nbt.3763
[71] Liu L Q, Pan A, Spofford C, et al. An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metabolic Engineering, 2015, 29: 36-45.
doi: 10.1016/j.ymben.2015.02.003
[72] Tetali S D. Terpenes and isoprenoids: a wealth of compounds for global use. Planta, 2019, 249(1): 1-8.
doi: 10.1007/s00425-018-3056-x pmid: 30467631
[73] Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nature Chemical Biology, 2007, 3(7): 408-414.
doi: 10.1038/nchembio.2007.5 pmid: 17576428
[74] Luo Z S, Liu N, Lazar Z, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metabolic Engineering, 2020, 61: 344-351.
doi: 10.1016/j.ymben.2020.07.010
[75] Cao X, Wei L J, Lin J Y, et al. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica. Bioresource Technology, 2017, 245: 1641-1644.
doi: 10.1016/j.biortech.2017.06.105
[76] Pereira E W M, Heimfarth L, Santos T K, et al. Limonene, a citrus monoterpene, non-complexed and complexed with hydroxypropyl-β-cyclodextrin attenuates acute and chronic orofacial nociception in rodents: evidence for involvement of the PKA and PKC pathway. Phytomedicine, 2022, 96: 153893.
doi: 10.1016/j.phymed.2021.153893
[77] Lee S M, Reddy C K, Ryu J J, et al. Solid-state fermentation with Aspergillus cristatus enhances the protopanaxadiol- and protopanaxatriol-associated skin anti-aging activity of Panax notoginseng. Frontiers in Microbiology, 2021, 12: 602135.
doi: 10.3389/fmicb.2021.602135
[1] 卞一凡,刘姝晗,张贝萌,张玉龙,李辛桐,王鹏超. 微生物合成2-苯乙醇研究进展*[J]. 中国生物工程杂志, 2022, 42(8): 128-136.
[2] 贾男,臧国伟,李春,王颖. 辅因子在微生物细胞工厂中的代谢调控与应用*[J]. 中国生物工程杂志, 2022, 42(7): 79-89.
[3] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[4] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[5] 高寅岭,张凤娇,赵贵众,张宏森,王风芹,宋安东. 衣康酸发酵研究进展[J]. 中国生物工程杂志, 2021, 41(5): 105-113.
[6] 朱航志,蒋珊,陈丹,刘鹏阳,万霞. 引入新型异戊二烯醇利用途径促进解脂耶氏酵母中β-胡萝卜素的合成*[J]. 中国生物工程杂志, 2021, 41(4): 37-46.
[7] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[8] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[9] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[10] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.
[11] 张野,王吉平,苏天明,何铁光,王瑾,曾向阳. 筛选微生物降解木质纤维素的研究进展[J]. 中国生物工程杂志, 2020, 40(6): 100-105.
[12] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[13] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[14] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[15] 陈凯丽,张付涛,王东月,张倩,李运清. 解脂耶氏酵母中囊泡蛋白YlSec15的鉴定及功能研究 *[J]. 中国生物工程杂志, 2019, 39(3): 29-36.