Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (12): 101-110    DOI: 10.13523/j.cb.2205020
综述     
微生物几丁质酶研究进展及应用*
王琳1,2,陈雅如1,程湄婕1,宋浩1,2,曹英秀1,**()
1 天津大学化工学院 教育部合成生物学前沿科学中心 系统生物工程教育部重点实验室 天津 300072
2 天津大学青岛海洋工程技术研究院 青岛 266237
Research Advances in Microbial Chitinase and Its Applications
WANG Lin1,2,CHEN Ya-ru1,CHENG Mei-jie1,SONG Hao1,2,CAO Ying-xiu1,**()
1 Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2 Qingdao Institute for Ocean Engineering of Tianjin University, Qingdao 266237, China
 全文: PDF(681 KB)   HTML
摘要:

几丁质由N-乙酰-D-氨基葡萄糖聚合而成,是自然界中仅次于纤维素的第二大类聚合物。微生物几丁质酶来源丰富,是生物降解或利用几丁质的主要媒介。野生型菌株几丁质酶产量低、活性弱,故近年来有关几丁质酶的研究侧重于对其产量及催化活性的提升等方面。此外,几丁质酶具有水解病原真菌细胞壁、破坏害虫体壁、生产N-乙酰氨基葡萄糖寡聚体或单体的应用价值,在医药、农业、食品加工等领域表现出巨大的市场潜力。综述微生物几丁质酶的来源、分类及工程改造,为后续几丁质酶的研究及开发利用提供参考。

关键词: 几丁质酶几丁质生物炼制壳寡糖生物医学应用    
Abstract:

In nature, chitin is the second largest class of polymers after cellulose. Chitin is formed by the polymerization of N-acetyl-D-glucosamine. The conversion of this abundant and cheap biomass feedstock into functional substances or energy by biorefineries is significant in terms of economic efficiency and environmental protection. There is a wealth of sources of microbial chitinase, which is the main medium for biodegradation or utilization of chitin. Since the low yield and ineffective activity of chitinase in wild-type strains limit the efficiency of the utilization of chitinous resources, recent studies on chitinase have focused on the enhancement of yield and catalytic activity. In addition, chitinases have the application value of hydrolyzing the cell wall of pathogenic fungi, destroying the body wall of pests, and producing N-acetylglucosamine oligomers or monomers, which show great market potential in the fields of medicine, agriculture, and food processing. This paper systematically summarizes the sources, classification and recent advances in engineering of microbial chitinases, as well as their wide applications in biotechnology and provides an outlook on the future development and utilization of chitinases.

Key words: Chitinase    Chitin    Biorefineries    Chitooligosaccharides    Biomedical applications
收稿日期: 2022-05-09 出版日期: 2023-01-05
ZTFLH:  Q936  
基金资助: *国家重点研发计划(2021YFC2104400);国家重点研发计划(2018YFA0901300);天津市青年人才托举工程资助项目(TJSQNTJ-2018-16)
通讯作者: 曹英秀     E-mail: caoyingxiu@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王琳
陈雅如
程湄婕
宋浩
曹英秀

引用本文:

王琳,陈雅如,程湄婕,宋浩,曹英秀. 微生物几丁质酶研究进展及应用*[J]. 中国生物工程杂志, 2022, 42(12): 101-110.

WANG Lin,CHEN Ya-ru,CHENG Mei-jie,SONG Hao,CAO Ying-xiu. Research Advances in Microbial Chitinase and Its Applications. China Biotechnology, 2022, 42(12): 101-110.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2205020        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I12/101

图1  几丁质酶的作用机制
分类 物种
革兰氏阴性菌 粘质沙雷氏菌(Serratia marcescens)
弧菌属(Vibrio)
色杆菌属(Chromobacterium)
克雷伯氏菌属(Klebsiella)
假单胞菌属(Pseudomonas)
黄杆菌属(Xanthomonas)
气单胞菌属(Aeromonas)
革兰氏阳性菌 芽孢杆菌属(Bacillus)
梭菌属(Clostridium)
节杆菌属(Arthrobacter)
诺卡氏菌属(Nocardia)
链霉菌属(Streptomyces)
真菌 木霉菌属(Trichoderma)
青霉菌属(Penicillium)
曲霉菌属(Aspergillus)
甲烷基黄萎霉(Verticillium metharhizium)
白僵菌属(Beauveria)
莱卡菌属(Lecanicillium)
隐孢子菌属(Aphanocladium)
脉孢菌属(Neurospora)
毛霉菌属(Mucor)
水苏霉菌属(Stachybotrys)
马勃菌属(Lycoperdon)
粘菌属(Myrothecium)
分生孢子(Conidiobolus)
落叶松蕈(Agaricus)
表1  常见几丁质酶的微生物来源
改造策略 改造方法 来源 活性提升 参考文献
理性改造 融合蛋白 循环芽孢杆菌 54% [35]
超声波诱导 灰色链霉菌 19.17% [32]
半理性改造 定点突变 粘质沙雷氏菌 20% [40]
苏云金芽孢杆菌 60% [38]
苏云金芽孢杆菌 2.4倍 [36]
芽孢杆菌属 2.7倍 [39]
芽孢杆菌属 3.06倍 [30]
非理性改造 定向进化 球孢白僵菌 2.7倍 [41]
地衣芽孢杆菌 2倍 [42]
枯草芽孢杆菌 16.89倍 [28]
枯草芽孢杆菌 1.57倍 [43]
表2  几丁质酶催化效率的提升
来源 作用 生物防治对象 参考文献
苏云金芽孢杆菌(Bacillus thuringiensis) 抗真菌 玫瑰镰刀菌(Fusarium roseum) [55-56]
小麦黑粉菌(Urocystis tritici)
灰霉病菌(Botrytis cinerea)
枯草芽孢杆菌(Bacillus subtilis) 抗真菌 尖孢镰刀菌(Fusarium oxysporum) [57]
茄镰刀菌(Fusarium solani)
茄丝核菌(Rhizoctonia solani)
米曲霉(Aspergillus oryzae)
米根霉(Rhizopus oryzae)
里氏木霉(Trichoderma reesei)
短小芽孢杆菌(Bacillus pumilus) 抗真菌、杀虫 黄曲霉(Aspergillus flavus) [58-59]
黑曲霉(A. niger)
烟曲霉(A. fumigatus)
嗜氢角质根(Ceratorhizahydrophila)
尖孢镰刀菌(Scirpophaga incertulas)
荧光绿假单胞菌(P. fluorescens) 杀虫 茶蚊 [60]
萎缩芽孢杆菌(Bacillus atrophaeus) 杀虫 果蝇幼虫 [61]
表3  潜在的几丁质酶生物防治剂
[1] Tharanathan R N, Kittur F S. Chitin-the undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition, 2003, 43(1): 61-87.
doi: 10.1080/10408690390826455
[2] Kaczmarek M B, Struszczyk-Swita K, Li X K, et al. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Frontiers in Bioengineering and Biotechnology, 2019, 7: 243-269.
doi: 10.3389/fbioe.2019.00243 pmid: 31612131
[3] Hirano T, Shiraishi H, Ikejima M, et al. Chitin oligosaccharide deacetylase from Shewanella baltica ATCC BAA-1091. Bioscience, Biotechnology, and Biochemistry, 2017, 81(3): 547-550.
doi: 10.1080/09168451.2016.1254529
[4] di Rosa M, Distefano G, Zorena K, et al. Chitinases and immunity: ancestral molecules with new functions. Immunobiology, 2016, 221(3): 399-411.
doi: 10.1016/j.imbio.2015.11.014 pmid: 26686909
[5] 周玉玲, 蒋思婧, 贺妮莎, 等. 微生物几丁质酶研究进展及其在N-乙酰氨基葡萄糖制备中的应用. 微生物学报, 2021, 61(8): 2192-2204.
Zhou Y L, Jiang S J, He N S, et al. Research progress of microbial chitinase and its application in the preparation of N-acetylglucosamine. Acta Microbiologica Sinica, 2021, 61(8): 2192-2204.
[6] Liu J, NanGong Z Y, Zhang J, et al. Expression and characterization of two chitinases with synergistic effect and antifungal activity from Xenorhabdus nematophila. World Journal of Microbiology & Biotechnology, 2019, 35(7): 106.
doi: 10.1007/s11274-019-2670-5
[7] Akram F, Jabbar Z, Aqeel A, et al. A contemporary appraisal on impending industrial and agricultural applications of thermophilic-recombinant chitinolytic enzymes from microbial sources. Molecular Biotechnology, 2022, 64(10): 1055-1075.
doi: 10.1007/s12033-022-00486-0
[8] Sarma P V S R N, Prakash J M, Das S N, et al. Microbial chitinases:natural sources, mutagenesis, and directed evolution to obtain thermophilic counterparts. Thermophilic Microbes in Environmental and Industrial Biotechnology. Dordrecht: Springer, 2013: 649-669.
[9] Le B, Yang S H. Microbial chitinases: properties, current state and biotechnological applications. World Journal of Microbiology & Biotechnology, 2019, 35(9): 144-156.
doi: 10.1007/s11274-019-2721-y
[10] Patel S, Goyal A. Chitin and chitinase: role in pathogenicity, allergenicity and health. International Journal of Biological Macromolecules, 2017, 97: 331-338.
doi: S0141-8130(16)32518-1 pmid: 28093332
[11] Itoh T, Kimoto H. Bacterial chitinase system as a model of chitin biodegradation. Advances in Experimental Medicine and Biology, 2019, 1142: 131-151.
doi: 10.1007/978-981-13-7318-3_7 pmid: 31102245
[12] Vaaje-Kolstad G, Horn S J, Sørlie M, et al. The chitinolytic machinery of Serratia marcescens——a model system for enzymatic degradation of recalcitrant polysaccharides. The FEBS Journal, 2013, 280(13): 3028-3049.
doi: 10.1111/febs.12181
[13] Yu P, Yan Y, Gu Q, et al. Codon optimisation improves the expression of Trichoderma viride sp. endochitinase in Pichia pastoris. Scientific Reports, 2013, 3: 3043.
doi: 10.1038/srep03043
[14] Kusaoke H, Shinya S, Fukamizo T, et al. Biochemical and biotechnological trends in chitin, chitosan, and related enzymes produced by Paenibacillus IK-5 strain. International Journal of Biological Macromolecules, 2017, 104: 1633-1640.
doi: S0141-8130(16)32505-3 pmid: 28472688
[15] Hui C, Jiang H, Liu B, et al. Chitin degradation and the temporary response of bacterial chitinolytic communities to chitin amendment in soil under different fertilization regimes. Science of the Total Environment, 2020, 705: 136003.
doi: 10.1016/j.scitotenv.2019.136003
[16] Veríssimo N V, Mussagy C U, Oshiro A A, et al. From green to blue economy: marine biorefineries for a sustainable ocean-based economy. Green Chemistry, 2021, 23(23): 9377-9400.
doi: 10.1039/D1GC03191K
[17] Beier S, Bertilsson S. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Frontiers in Microbiology, 2013, 4: 149-161.
doi: 10.3389/fmicb.2013.00149 pmid: 23785358
[18] Hartl L, Zach S, Seidl-Seiboth V. Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Applied Microbiology and Biotechnology, 2012, 93(2): 533-543.
doi: 10.1007/s00253-011-3723-3 pmid: 22134638
[19] Cantarel B L, Coutinho P M, Rancurel C, et al. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 2008, 37(suppl_1): D233-D238.
[20] Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 2013, 42(D1): D490-D495.
[21] Larsen T, Petersen B O, Storgaard B G, et al. Characterization of a novel Salmonella typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugate. Glycobiology, 2010, 21(4): 426-436.
doi: 10.1093/glycob/cwq174
[22] Udaya Prakash N A, Jayanthi M, Sabarinathan R, et al. Evolution, homology conservation, and identification of unique sequence signatures in GH19 family chitinases. Journal of Molecular Evolution, 2010, 70(5): 466-478.
doi: 10.1007/s00239-010-9345-z pmid: 20480157
[23] Han B, Zhou K, Li Z H, et al. Characterization of the first fungal glycosyl hydrolase family 19 chitinase (NbchiA) from Nosema bombycis (Nb). Journal of Eukaryotic Microbiology, 2016, 63(1): 37-45.
doi: 10.1111/jeu.12246
[24] Zhang R, Zhou J P, Song Z F, et al. Enzymatic properties of β-N-acetylglucosaminidases. Applied Microbiology and Biotechnology, 2018, 102(1): 93-103.
doi: 10.1007/s00253-017-8624-7 pmid: 29143882
[25] Gomaa E Z, El-Mahdy O M. Improvement of chitinase production by Bacillus thuringiensis NM101-19 for antifungal biocontrol through physical mutation. Microbiology, 2018, 87(4): 472-485.
doi: 10.1134/S0026261718040094
[26] Vyawahare M P, Ingle S T, Gathe A G. Morphological variation and chitinase production ability of Trichoderma viride mutants. International Journal of Current Microbiology and Applied Sciences, 2019, 8(1): 447-455.
[27] Yang S Q, Fu X, Yan Q J, et al. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii. Food Chemistry, 2016, 192: 1041-1048.
doi: 10.1016/j.foodchem.2015.07.092
[28] Wang S J, Fu G, Li J L, et al. High-efficiency secretion and directed evolution of chitinase BcChiA 1 in Bacillus subtilis for the conversion of chitinaceous wastes into chitooligosaccharides. Frontiers in Bioengineering and Biotechnology, 2020, 8: 432.
doi: 10.3389/fbioe.2020.00432
[29] Kidibule P E, Santos-Moriano P, Jiménez-Ortega E, et al. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microbial Cell Factories, 2018, 17(1): 47.
doi: 10.1186/s12934-018-0895-x pmid: 29566690
[30] Pan M Y, Li J H, Lv X Q, et al. Molecular engineering of chitinase from Bacillus sp. DAU101 for enzymatic production of chitooligosaccharides. Enzyme and Microbial Technology, 2019, 124: 54-62.
doi: 10.1016/j.enzmictec.2019.01.012
[31] Arnold N D, Brück W M, Garbe D, et al. Enzymatic modification of native chitin and conversion to specialty chemical products. Marine Drugs, 2020, 18(2): 93-119.
doi: 10.3390/md18020093
[32] Hou F R, Ma X B, Fan L H, et al. Activation and conformational changes of chitinase induced by ultrasound. Food Chemistry, 2019, 285: 355-362.
doi: S0308-8146(19)30269-9 pmid: 30797357
[33] Chen L, Chen J P, Kumar A, et al. Effects of domains modification on the catalytic potential of chitinase from Pseudomonas aeruginosa. International Journal of Biological Macromolecules, 2015, 78: 266-272.
doi: 10.1016/j.ijbiomac.2015.04.017 pmid: 25895958
[34] Nguyen-Thi N, Doucet N. Combining chitinase C and N-acetylhexosaminidase from Streptomyces coelicolor A3(2) provides an efficient way to synthesize N-acetylglucosamine from crystalline chitin. Journal of Biotechnology, 2016, 220: 25-32.
doi: 10.1016/j.jbiotec.2015.12.038 pmid: 26767320
[35] Su H P, Gao L, Sun J N, et al. Engineering a carbohydrate binding module to enhance chitinase catalytic efficiency on insoluble chitinous substrate. Food Chemistry, 2021, 355: 129462.
doi: 10.1016/j.foodchem.2021.129462
[36] Pardo-López L, Muñoz-Garay C, Porta H, et al. Strategies to improve the insecticidal activity of cry toxins from Bacillus thuringiensis. Peptides, 2009, 30(3): 589-595.
doi: 10.1016/j.peptides.2008.07.027 pmid: 18773932
[37] Kawai F, Nakamura A, Visootsat A, et al. Plasmid-based one-pot saturation mutagenesis and robot-based automated screening for protein engineering. ACS Omega, 2018, 3(7): 7715-7726.
doi: 10.1021/acsomega.8b00663 pmid: 30221239
[38] Ni H, Zeng S, Qin X, et al. Molecular docking and site-directed mutagenesis of a Bacillus thuringiensis chitinase to improve chitinolytic, synergistic lepidopteran-larvicidal and nematicidal activities. International Journal of Biological Sciences, 2015, 11(3): 304-315.
doi: 10.7150/ijbs.10632
[39] Songsiriritthigul C, Pesatcha P, Eijsink V G H, et al. Directed evolution of a Bacillus chitinase. Biotechnology Journal, 2009, 4(4): 501-509.
doi: 10.1002/biot.200800258 pmid: 19370717
[40] Visootsat A, Nakamura A, Wang T W, et al. Combined approach to engineer a highly active mutant of processive chitinase hydrolyzing crystalline chitin. ACS Omega, 2020, 5(41): 26807-26816.
doi: 10.1021/acsomega.0c03911 pmid: 33111007
[41] Fan Y H, Fang W G, Xiao Y H, et al. Directed evolution for increased chitinase activity. Applied Microbiology and Biotechnology, 2007, 76(1): 135-139.
pmid: 17468866
[42] Menghiu G, Ostafe V, Prodanović R, et al. A high-throughput screening system based on fluorescence-activated cell sorting for the directed evolution of chitinase A. International Journal of Molecular Sciences, 2021, 22(6): 3041-3057.
[43] 潘梦妍, 徐显皓, 刘延峰, 等. 甲壳素酶Chisb的定向进化及生物转化合成几丁寡糖. 生物工程学报, 2019, 35(9): 1787-1796.
Pan M Y, Xu X H, Liu Y F, et al. Directed evolution of chitinase chisb and biosynthesis of chitooligosaccharides. Chinese Journal of Biotechnology, 2019, 35(9): 1787-1796.
[44] Asmani K L, Bouacem K, Ouelhadj A, et al. Biochemical and molecular characterization of an acido-thermostable endo-chitinase from Bacillus altitudinis KA 15 for industrial degradation of chitinous waste. Carbohydrate Research, 2020, 495: 108089.
doi: 10.1016/j.carres.2020.108089
[45] Li A N, Yu K, Liu H Q, et al. Two novel thermostable chitinase genes from thermophilic fungi: cloning, expression and characterization. Bioresource Technology, 2010, 101(14): 5546-5551.
doi: 10.1016/j.biortech.2010.02.058
[46] Liu Z H, Tyo K E J, Martínez J L, et al. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2012, 109(5): 1259-1268.
doi: 10.1002/bit.24409
[47] Neeraja C, Anil K, Purushotham P, et al. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Critical Reviews in Biotechnology, 2010, 30(3): 231-241.
doi: 10.3109/07388551.2010.487258 pmid: 20572789
[48] Emruzi Z, Aminzadeh S, Karkhane A A, et al. Improving the thermostability of Serratia marcescens B4A chitinase via G191V site-directed mutagenesis. International Journal of Biological Macromolecules, 2018, 116: 64-70.
doi: 10.1016/j.ijbiomac.2018.05.014
[49] Xu P, Ni Z F, Zong M H, et al. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design. International Journal of Biological Macromolecules, 2020, 150: 9-15.
doi: 10.1016/j.ijbiomac.2020.02.033
[50] Singh R V, Sambyal K, Negi A, et al. Chitinases production: a robust enzyme and its industrial applications. Biocatalysis and Biotransformation, 2021, 39(3): 161-189.
doi: 10.1080/10242422.2021.1883004
[51] Toprak U, Erlandson M, Hegedus D D. Peritrophic matrix proteins. Trends Entomol, 2010, 6: 23-51.
[52] Bonanomi G, Lorito M, Vinale F, et al. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annual Review of Phytopathology, 2018, 56: 1-20.
doi: 10.1146/annurev-phyto-080615-100046 pmid: 29768137
[53] Neeraja C, Moerschbacher B, Podile A R. Fusion of cellulose binding domain to the catalytic domain improves the activity and conformational stability of chitinase in Bacillus licheniformis DSM13. Bioresource Technology, 2010, 101(10): 3635-3641.
doi: 10.1016/j.biortech.2009.12.118
[54] Narendrakumar G, Karthick Raja Namasivayam S. Surface-modified nanosilica-chitinase (SiNp-Chs)-doped nano enzyme conjugate and its synergistic pesticidal activity with plant extracts against armyworm Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). IET Nanobiotechnology, 2021, 15(1): 117-134.
doi: 10.1049/nbt2.12004 pmid: 34694724
[55] Tao A L, Pang F H, Huang S L, et al. Characterisation of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Science and Technology, 2014, 24(8): 901-924.
doi: 10.1080/09583157.2014.904502
[56] Martínez-Absalón S, Rojas-Solís D, Hernández-León R, et al. Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocontrol Science and Technology, 2014, 24(12): 1349-1362.
doi: 10.1080/09583157.2014.940846
[57] El-Shora H, El-Sharkawy R. Chitinase from Bacillus subtilis: immobilization, antifungal activity and production of N-acetyl-d glucosamine. Bioscience Research, 2020, 17: 123-135.
[58] Singh G, Arya S K. Antifungal and insecticidal potential of chitinases: a credible choice for the eco-friendly farming. Biocatalysis and Agricultural Biotechnology, 2019, 20: 101289.
doi: 10.1016/j.bcab.2019.101289
[59] Rishad K S, Rebello S, Nathan V K, et al. Optimised production of chitinase from a novel mangrove isolate, Bacillus pumilus MCB-7 using response surface methodology. Biocatalysis and Agricultural Biotechnology, 2016, 5: 143-149.
doi: 10.1016/j.bcab.2016.01.009
[60] Suganthi M, Senthilkumar P, Arvinth S, et al. Chitinase from Pseudomonas fluorescens and its insecticidal activity against Helopeltis theivora. The Journal of General and Applied Microbiology, 2017, 63(4): 222-227.
doi: 10.2323/jgam.2016.11.001
[61] Al-Qwabah A A, Al-Limoun M O, Al-Mustafa A H, et al. Bacillus atrophaeus A7 crude chitinase: characterization and potential role against Drosophila melanogaster larvae. Jordan Journal of Biological Sciences, 2018, 11(4): 451-459.
[62] 牛腾飞, 李江华, 堵国成, 等. 微生物法合成N-乙酰氨基葡萄糖及其衍生物的研究进展. 食品与发酵工业, 2020, 46(1): 274-279.
Niu T F, Li J H, Du G C, et al. Research progress on microbiological synthesis of N-acetylglucosamine and its derivatives. Food and Fermentation Industries, 2020, 46(1): 274-279.
[63] Zhou J S, Chen L L, Kang L Q, et al. ChiE1 from Coprinopsis cinerea is characterized as a processive exochitinase and revealed to have a significant synergistic action with endochitinase ChiIII on chitin degradation. Journal of Agricultural and Food Chemistry, 2018, 66(48): 12773-12782.
doi: 10.1021/acs.jafc.8b04261
[64] Suresh P V, Anil Kumar P K. Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-D-glucosamine by thermoactive chitinases from soil mesophilic fungi. Biodegradation, 2012, 23(4): 597-607.
doi: 10.1007/s10532-012-9536-y pmid: 22270691
[65] Jung W J, Park R D. Bioproduction of chitooligosaccharides: present and perspectives. Marine Drugs, 2014, 12(11): 5328-5356.
doi: 10.3390/md12115328
[66] Selenius O, Korpela J, Salminen S, et al. Effect of chitin and chitooligosaccharide on in vitro growth of Lactobacillus rhamnosus GG and Escherichia coli TG. Applied Food Biotechnology, 2018, 5(3): 163-172.
[67] Murao S, Kawada T, Itoh H, et al. Purification and characterization of a novel type of chitinase from Vibrio alginolyticus TK-22. Bioscience, Biotechnology, and Biochemistry, 1992, 56(2): 368-369.
doi: 10.1271/bbb.56.368
[68] Tamai Y, Miyatake K, Okamoto Y, et al. Enhanced healing of cartilaginous injuries by N-acetyl-D-glucosamine and glucuronic acid. Carbohydrate Polymers, 2003, 54(2): 251-262.
doi: 10.1016/S0144-8617(03)00170-X
[69] Salvatore S, Heuschkel R, Tomlin S, et al. A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Alimentary Pharmacology & Therapeutics, 2000, 14(12): 1567-1579.
[70] Hamid R, Khan M A, Ahmad M, et al. Chitinases: an update. Journal of Pharmacy & Bioallied Sciences, 2013, 5(1): 21-29.
[71] Das S N, Neeraja C, Sarma P V S R N, et al. Microbial chitinases for chitin waste management. Microorganisms in Environmental Management. Dordrecht: Springer, 2012: 135-150.
[72] Inokuma K, Takano M, Hoshino K. Direct ethanol production from N-acetylglucosamine and chitin substrates by Mucor species. Biochemical Engineering Journal, 2013, 72: 24-32.
doi: 10.1016/j.bej.2012.12.009
[73] Vyas P, Deshpande M. Enzymatic hydrolysis of chitin by Myrothecium verrucaria chitinase complex and its utilization to produce SCP. Journal of General and Applied Microbiology, 1991, 37(3): 267-275.
doi: 10.2323/jgam.37.267
[74] Patil N S, Jadhav J P. Enzymatic production of N-acetyl-D-glucosamine by solid state fermentation of chitinase by Penicillium ochrochloron MTCC 517 using agricultural residues. International Biodeterioration & Biodegradation, 2014, 91: 9-17.
[75] Tom R A, Carroad P A. Effect of reaction conditions on hydrolysis of chitin by Serratia marcescens QMB 1466 chitinase. Journal of Food Science, 1981, 46(2): 646-647.
doi: 10.1111/j.1365-2621.1981.tb04934.x
[76] Nasseri A T, Rasoul-Ami S, Morowvat M H, et al. Single cell protein: production and process. American Journal of Food Technology, 2011, 6(2): 103-116.
doi: 10.3923/ajft.2011.103.116
[77] Gurav R, Bhatia S K, Moon Y M, et al. One-pot exploitation of chitin biomass for simultaneous production of electricity, n-acetylglucosamine and polyhydroxyalkanoates in microbial fuel cell using novel marine bacterium Arenibacter palladensis YHY2. Journal of Cleaner Production, 2019, 209: 324-332.
doi: 10.1016/j.jclepro.2018.10.252
[78] Li S W, Zeng R J, Sheng G P. An excellent anaerobic respiration mode for chitin degradation by Shewanella oneidensis MR-1 in microbial fuel cells. Biochemical Engineering Journal, 2017, 118: 20-24.
doi: 10.1016/j.bej.2016.11.010
[79] Zhao J T, Li F, Cao Y X, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnology Advances, 2021, 53: 107682.
doi: 10.1016/j.biotechadv.2020.107682
[80] Gutiérrez-Román M I, Holguín-Meléndez F, Dunn M F, et al. Antifungal activity of Serratia marcescens CFFSUR-B 2 purified chitinolytic enzymes and prodigiosin against Mycosphaerella fijiensis, causal agent of black sigatoka in banana (Musa spp.). BioControl, 2015, 60(4): 565-572.
doi: 10.1007/s10526-015-9655-6
[81] Allonsius C N, Vandenheuvel D, Oerlemans E F M, et al. Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Scientific Reports, 2019, 9: 2900.
doi: 10.1038/s41598-019-39625-0 pmid: 30814593
[82] Le B, Yang S H. Characterization of a chitinase from Salinivibrio sp. BAO-1801 as an antifungal activity and a biocatalyst for producing chitobiose. Journal of Basic Microbiology, 2018, 58(10): 848-856.
doi: 10.1002/jobm.201800256
[83] Pan X Q, Shih C C, Harday J. Chitinase induces lysis of MCF-7 cells in culture and of human breast cancer xenograft B11-2 in SCID mice. Anticancer Research, 2005, 25(5): 3167-3172.
pmid: 16101122
[84] Abu-Tahon M A, Isaac G S. Anticancer and antifungal efficiencies of purified chitinase produced from Trichoderma viride under submerged fermentation. The Journal of General and Applied Microbiology, 2020, 66(1): 32-40.
doi: 10.2323/jgam.2019.04.006
[1] 许敏华,张晶晶,金小宝,李小波,王艳,马艳. 美洲大蠊内生菌几丁质酶基因的克隆、表达及其活性研究 *[J]. 中国生物工程杂志, 2019, 39(1): 31-37.
[2] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[3] 王方旭,陈玉玲,耿读艳,陈传芳. 趋磁细菌及磁小体的生物医学应用研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 74-80.
[4] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.
[5] 张瑞祥, 杨忠. 海底沉积物中几丁质酶的筛选、分离及活性分析[J]. 中国生物工程杂志, 2015, 35(8): 76-82.
[6] 岳昌武, 李园园, 吕玉红, 王苗, 邵美云, 刘明皓, 黄英. 海洋链霉菌Streptomyces olivaceus FXJ7.023来源多功能几丁质酶的克隆、表达及鉴定[J]. 中国生物工程杂志, 2014, 34(8): 47-53.
[7] 施贤卫, 张伟涛, 张小飞, 杨广宇, 冯雁. Actinosynne mamirum DSM43827溶解性多糖单加氧酶的异源表达和酶学性质表征[J]. 中国生物工程杂志, 2014, 34(7): 17-23.
[8] 张军霞, 丛大鹏, 李雅华, 咸洪泉. 棘孢木霉几丁质酶tachi2 基因的原核表达及酶学性质研究[J]. 中国生物工程杂志, 2013, 33(6): 45-51.
[9] 林振亚, 吴琼, 孙瑞艳, 陈捷, 李雅乾. 链霉菌A01-chit33CT产纳他霉素和几丁质酶协同表达发酵条件优化[J]. 中国生物工程杂志, 2012, 32(10): 67-73.
[10] 徐勇, 王荥, 朱均均, 勇强, 余世袁. 木糖高效生物转化的新出路[J]. 中国生物工程杂志, 2012, 32(05): 113-119.
[11] 麻攀, 刘洪涛, 许青松, 白雪芳, 杜昱光. 壳寡糖缓解甲萘醌诱导巨噬细胞损伤机制初探[J]. 中国生物工程杂志, 2011, 31(06): 18-21.
[12] 张洪艳, 王文霞, 尹恒, 卢航, 赵小明, 杜昱光. 壳寡糖诱导植物防御反应中一氧化氮信号的研究[J]. 中国生物工程杂志, 2011, 31(02): 18-22.
[13] 惠有为, 夏天, 赵亚玲, 贾静芳. HaSNPV几丁质酶的分离纯化与毒理学研究[J]. 中国生物工程杂志, 2011, 31(02): 43-49.
[14] 夏启玉 王宇光 孙建波 卢雪花 顾文亮. 一株拮抗香蕉枯萎病的内生细菌的分离及其几丁质酶基因信号肽的分泌活性分析[J]. 中国生物工程杂志, 2010, 30(09): 24-30.
[15] 张海涛 王婷 田囡 刘新利. 几丁质酶产生菌筛选鉴定及产酶性能研究[J]. 中国生物工程杂志, 2010, 30(08): 82-87.