Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (7): 17-23    DOI: 10.13523/j.cb.20140703
研究报告     
Actinosynne mamirum DSM43827溶解性多糖单加氧酶的异源表达和酶学性质表征
施贤卫, 张伟涛, 张小飞, 杨广宇, 冯雁
上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
The Heterologous Expression and Characterization of Lytic Polysaccharide Monooxygenase from Actinosynnema mirum DSM 43827
SHI Xian-wei, ZHANG Wei-tao, ZHANG Xiao-fei, YANG Guang-yu, FENG Yan
State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
 全文: PDF(867 KB)   HTML
摘要:

溶解性多糖单加氧酶(lytic polysaccharide monooxygenases,LPMO)是近年来新发现的一类作用于结晶多糖(如纤维素和几丁质)的氧化酶;LPMO通过氧化的方式来裂解底物从而有利于水解酶系进一步作用,获得可溶性寡糖。为获得更多新酶资源,通过PCR方法从Actinosynnema mirum DSM 43827菌株中成功地克隆了编码LPMO的基因Amir_5334;将该基因构建到含麦芽糖结合蛋白(maltose binding protein,MBP)标签的pET-28a(+)载体(pET-28a-MBP)上,并转化至E. coli BL21(DE3)中进行诱导表达。利用镍柱亲和层析进行纯化,获得融合表达蛋白后,使用Factor Xa蛋白酶切除MBP标签,最终得到成熟的LPMO(Am5)。成熟Am5的预测分子量约为26 kDa,等电点为8.3。分析Am5序列发现,Am5与同家族中LPMO的序列一致性较低,具有良好的序列新颖性。酶学性质分析表明Am5是对几丁质有氧化活性而对纤维素无氧化活性的LPMO;与几丁质酶协同降解几丁质时可提高几丁质酶60%的水解效率;吸附实验显示,Am5对几丁质具有较强的吸附作用,而对纤维素吸附能力较弱。以上研究表明,Am5是一种针对几丁质底物具有高效选择性的新型氧化酶。

关键词: 溶解性多糖单加氧酶融合表达酶学性质几丁质    
Abstract:

Lytic polysaccharide monooxygenases (LPMO) is a recently discovered new type of oxidase that catalyzes oxidative cleavage of recalcitrant polysaccharides (such as cellulose and chitin), andits oxidative cleavage are advantages for degradation byglycoside hydrolasesystem to obtain soluble oligosaccharides. To get more LPMOs, the Amir_5334 gene coding LPMO was cloned successfully from Actinosynnema mirum DSM 43827 by PCR. The gene was inserted into the pET28a(+) vector that contained maltose binding protein (MBP-tag) and transformed into E.coli BL21(DE3)cell for induced expression. The MBP-Am5 fusion protein was purified by Ni-column affinity chromatography and cleavaged by Factor Xa, and obtained the nature Am5 finally. The predicted molecular weight of nativeAm5 is about 26 kDa, and its isoelectric point is 8.3.The analysis of Am5 sequence shows that the sequence identityis very low, compared with other LPMOs in AA10 family.The characterization of Am5 shows that Am5 is a LPMO that could act on chitin but not cellulose. On the other hand, Am5 can degrade chitin with chitinase synergistically, and the hydrolysis efficiency increased by 60%. The affinity of Am5 demonstrated Am5 combined with chitin more strongly than cellulose. All of above indicates that Am5 may be a LPMO acted on chitin with high efficiency and selectivity.

Key words: Lytic polysaccharide monooxygenases(LPMO)    Fusion expression    Enzymatic property    Chitin
收稿日期: 2014-05-16 出版日期: 2014-07-25
ZTFLH:  Q78  
基金资助:

国家“863”计划资助项目(2013AA102801)

通讯作者: 冯雁     E-mail: yfeng2009@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

施贤卫, 张伟涛, 张小飞, 杨广宇, 冯雁. Actinosynne mamirum DSM43827溶解性多糖单加氧酶的异源表达和酶学性质表征[J]. 中国生物工程杂志, 2014, 34(7): 17-23.

SHI Xian-wei, ZHANG Wei-tao, ZHANG Xiao-fei, YANG Guang-yu, FENG Yan. The Heterologous Expression and Characterization of Lytic Polysaccharide Monooxygenase from Actinosynnema mirum DSM 43827. China Biotechnology, 2014, 34(7): 17-23.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140703        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I7/17


[1] Svein J H, Vaaje-Kolstad G, Westereng B,et, al.Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 2012, 5:45.

[2] Hemsworth G R, Davies G J, Walton P H. Recalcitrant polysaccharide degradation by noveloxidative biocatalysts. Appl Microbiol Biotechnol, 2013, 97(19):8455-8465.

[3] Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure, 1995, 3(9):853-859.

[4] Horn S J, Sikorski P, Cederkvist J B, et, al. Costs and benefits of processivity in enzymaticdegradation of recalcitrant polysaccharides. Proc Natl Acad Sci USA, 2006,103(48):18089-18094.

[5] Eijsink VGH, Vaaje-Kolstad G, Vrum K M, et, al. Towards new enzymes forbiofuels: lessons from chitinase research. Trends Biotechnol, 2008,26(5):228-235.

[6] Hemsworth G R, Davies G J, Walton P H.Recent insights into copper-containing lytic polysaccharidemono-oxygenases. Current Opinion in Structural Biology, 2013, 23(5):660-668.

[7] Quinlan R J, Sweeney M D, Lo Leggio L, et al. Insights into theoxidative degradation of cellulose by a copper metalloenzyme thatexploits biomass components. ProcNatlAcad Sci USA, 2011,108(37):15079-15084.

[8] Westereng B, Ishida T, Vaaje-Kolstad G,et al. The putativeendoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependentoxidative enzyme that cleaves cellulose. PLoS One, 2011,6(11):e27807.

[9] Vaaje-Kolstad G, Westereng B, Horn S J, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrantpolysaccharides. Science, 2010, 330(6001):219-222.

[10] Vaaje-Kolstad G, Liv A B, Sigrid G, et al. Characterization of the Chitinolytic Machinery of Enterococcus faecalis V583 and High-Resolution Structure of Its Oxidative CBM33 Enzyme. Journal of Molecular Biology, 2011, 416(2): 239-254.

[11] Forsberg Z, Vaaje-Kolstad G, Westereng B, et al. Cleavage of cellulose by aCBM33 protein. Prot Science, 2011, 20(9):1479-1483.

[12] Miller GL. Use of dinitrosalicyclic acid regent for determination ofreducing sugar. Anal Chem, 1951, 31: 426-4281

[13] 苏畅,夏文水,姚惠源.氨基葡萄糖和乙酰氨基葡萄糖的测定方法.食品工业技术,2003.(6):74-75. Su C, Xia W S, Yao H Y. Determination methods of glucosamine and acetyl glucosamine. Science and technology of food industry, 2003.(6):74-75.

[1] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[2] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[3] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[4] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[5] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[6] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[7] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[8] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[9] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[10] 许敏华,张晶晶,金小宝,李小波,王艳,马艳. 美洲大蠊内生菌几丁质酶基因的克隆、表达及其活性研究 *[J]. 中国生物工程杂志, 2019, 39(1): 31-37.
[11] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[12] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[13] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.
[14] 徐安健, 李艳萌, 李斯文, 乌姗娜, 张蓓, 黄坚. 人组氨酸磷酸酶蛋白PHPT1的细胞定位及其对细胞层状伪足形成的影响[J]. 中国生物工程杂志, 2017, 37(6): 17-21.
[15] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.