Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (8): 128-136    DOI: 10.13523/j.cb.2203073
综述     
微生物合成2-苯乙醇研究进展*
卞一凡,刘姝晗,张贝萌,张玉龙,李辛桐,王鹏超**()
东北林业大学生命科学学院 哈尔滨 150000
Advances in Microbial Synthesis of 2-Phenylethanol
BIAN Yi-fan,LIU Shu-han,ZHANG Bei-meng,ZHANG Yu-long,LI Xin-tong,WANG Peng-chao**()
School of Life Science, Northeast Forestry University, Harbin 150000, China
 全文: PDF(1688 KB)   HTML
摘要:

2-苯乙醇(2-PE)是一种具有广阔应用前景的高级芳香醇。由于化学合成的复杂性和天然提取的高昂成本,近年来,利用微生物发酵合成2-PE受到广泛关注。许多微生物有天然合成2-PE的能力,但产量相对较低,并不适合大规模生产。在最近几年的研究中,利用代谢工程和合成生物学技术,通过上调限速酶基因表达水平,改善前体转运,提高 2-PE耐受性等多方面优化,2-PE的微生物产量有了大幅度的提高。综述微生物合成2-PE的相关研究进展,分析关键代谢调控的机制,并就目前存在的问题提出了改进建议。

关键词: 2-苯乙醇生物合成代谢工程酵母大肠杆菌    
Abstract:

2-Phenylethanol (2-PE) is an important aromatic with broad application prospects. Due to the complexity of chemical synthesis and the high cost of natural extraction, the synthesis of 2-PE by microbial fermentation has gained extensive attention recently. Various microorganisms have the ability to synthesize 2-PE naturally with low yield. In recent years, using genetic engineering and synthetic biology technology, the microbial yield of 2-PE has been greatly improved by up-regulating the expression level of rate-limiting enzyme gene, improving precursors transport and enhancing the tolerance of 2-PE. The research progress of microbial synthesis of 2-PE is reviewed, the mechanism of key metabolic regulation is analyzed, current problems are addressed, and suggestions for improvement are proposed.

Key words: 2-Phenylethanol    Biosynthesis    Metabolic engineering    Yeast    Escherichia coli
收稿日期: 2022-03-31 出版日期: 2022-09-07
ZTFLH:  Q36  
基金资助: * 国家级大学生创新创业项目(202110225006)
通讯作者: 王鹏超     E-mail: pengchaowang1990@nefu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卞一凡
刘姝晗
张贝萌
张玉龙
李辛桐
王鹏超

引用本文:

卞一凡,刘姝晗,张贝萌,张玉龙,李辛桐,王鹏超. 微生物合成2-苯乙醇研究进展*[J]. 中国生物工程杂志, 2022, 42(8): 128-136.

BIAN Yi-fan,LIU Shu-han,ZHANG Bei-meng,ZHANG Yu-long,LI Xin-tong,WANG Peng-chao. Advances in Microbial Synthesis of 2-Phenylethanol. China Biotechnology, 2022, 42(8): 128-136.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2203073        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I8/128

图1  微生物 2-PE 合成途径及优化靶点
酶名称 Km/(mmol/L) Kcat/s-1 Kcat/Km
aroF(PEP) 21 50 400 2 400
aroF(E4P) 52.36 60 737.6 1 160
aroQ 2.94 30 193.8 10 270
aroE 186 316 200 1 700
aroA 2 1 820 000 000 910 000 000
pheA 4.88 23 287.848 4 772.1
aro10 1.13 226 200
ADH 0.91 967.33 1 063
表1  苯丙酮酸途径中部分酶活汇总
优化方向 菌株 合成途径 策略 底物 产量 得率
/(g/g)
参考
文献
提高L-Phe
的利用率
耶罗维解脂酵母
Yarrowia lipolytica
艾氏途径 引入L-Phe通透酶Gap1的同源物GapY3,并过表达合成L-Phe转氨基受体α-酮戊二酸的乌头酸水合酶及线粒体2-氧代二羧酸载体odc1 L-Phe、
葡萄糖
2.67 g/L 0.702 [10]
酿酒酵母S. cerevisiae 艾氏途径 过表达链霉菌的L-谷氨酸氧化酶strlgox L-Phe、
葡萄糖
4.02 g/L 0.6 [11]
抑制竞争
途径
耶罗维解脂酵母
Yarrowia lipolytica
艾氏途径 敲除乙醛脱氢酶ald2和ald3,并敲除二酰甘油酰基转移酶抑制脂肪酸合成 L-Phe、
葡萄糖
2.67 g/L 0.702 [10]
酿酒酵母S. cerevisiae 艾氏途径 利用CRISPR/Cas9敲除乙酰基转移酶 L-Phe、
葡萄糖
1.2 g/L [13]
巴斯德毕赤酵母
Pichia pastoris
苯丙酮酸
途径
更换弱的tyr1启动子,下调其表达水平 葡萄糖 1.17 g/L 0.059 [15]
大肠杆菌E.coli 苯乙烯衍生
途径
敲除PykFPykACcr,并敲除feaB,减少副产物苯乙酸 L-Phe 1.16 g/L 0.039 [22]
上调关键酶
的表达
耶罗维解脂酵母
Yarrowia lipolytica
艾氏途径 上调苯丙酮酸脱羧酶aro10和苯乙醛还原酶PAR4 L-Phe、
葡萄糖
2.67 g/L 0.702 [10]
酿酒酵母
S. cerevisiae
艾氏途径 引入乳酸乳杆菌的苯丙酮酸脱羧酶kdcA L-Phe、
葡萄糖
4.02 g/L 0.6 [11]
大肠杆菌E.coli 艾氏途径 引入玫瑰中的苯乙醛合成酶PAAS L-Phe 0.39 g/L 0.49 [21]
酿酒酵母S. cerevisiae 苯丙酮酸
途径
过表达转酮醇酶基因TKL1,并在此基础上上调突变的磷酸烯醇式丙酮酸羧激酶PYK1 葡萄糖 1.53 g/L 0.077 [14]
巴斯德毕赤酵母
Pichia pastoris
苯丙酮酸
途径
3-脱氧基-7-脱氧庚磺酸-7-合酶合酶AroG和分支酸变位酶/预苯酸脱水酶PheA的过表达 葡萄糖 1.17 g/L 0.059 [15]
大肠杆菌E.coli 苯丙酮酸
途径
过表达预苯酸脱水酶(PheA)和DAHP合成酶(AroF) 葡萄糖 0.33 g/L [24]
大肠杆菌E.coli 苯丙酮酸
途径
过表达PEP合酶ppsA和转酮酶tktA 葡萄糖 0.32 g/L 0.053 [25]
大肠杆菌E.coli 苯乙烯衍生
途径
引入外源基因pal2fdc1styAB,并过表达氧化苯乙烯异构酶 L-Phe 1.16 g/L 0.039 [22]
无细胞系统 苯乙烯衍生
途径
共表达苯丙氨酸解氨酶pal2和苯丙酸脱羧酶pad L-Phe 0.20 g/L [23]
降低2-PE
的细胞毒性
季也蒙酵母
Meyerozyma guilliermondii
艾氏途径 自身具有高耐受性;膜蛋白中插入酶、热休克蛋白Hsp90和伴侣蛋白SGT1 L-Phe 3.1 g/L 0.39 [32]
鲁氏酵母Zygosaccha-
romyces rouxii
艾氏途径/
苯丙酮酸途径
自身具有高耐受性,过表达aro8和aro10 L-Phe/
葡萄糖
3.58 g/L
3.8 mg/L
0.86 [7]
甘油假丝酵母
Candida glycerinogenes
艾氏途径 自身具有高耐受性 L-Phe 5.0 g/L 0.71 [33]
地衣芽孢杆菌
Bacillus licheniformis
艾氏途径 自身具有高耐受性;共表达乳酸乳杆菌的kivD和大肠杆菌的yghD L-Phe 3.04 g/L 0.61 [29]
酿酒酵母S. cerevisiae 艾氏途径 使用油酸进行萃取 L-Phe 12.6 g/L 0.32 [6,36]
表2  微生物合成2-PE优化途径及策略汇总
[1] 杨晓, 陈芳, 李景明. 植物中2-苯乙醇的合成研究进展. 园艺学报, 2010, 37(10): 1690-1694.
Yang X, Chen F, Li J M. Research progress on 2-phenylethanol biosynthesis in plants. Acta Horticulturae Sinica, 2010, 37(10): 1690-1694.
[2] 曹明乐. Enterobacter sp.以糖为原料生物法合成2-苯乙醇. 济南: 山东大学, 2012.
Cao M (L /Y). Biosynthetic of 2-phenylethanol by Enterobacter sp. using glucose as feedtock. Jinan: Shandong University, 2012.
[3] 严伟, 高豪, 蒋羽佳, 等. 2-苯乙醇生物合成的研究进展. 合成生物学, 2021, 2(6): 1030-1045.
Yan W, Gao H, Jiang Y J, et al. Research progress in 2-phenylethanol production through biological processes. Synthetic Biology Journal, 2021, 2(6): 1030-1045.
[4] Mitri S, Koubaa M, Maroun R G, et al. Bioproduction of 2-phenylethanol through yeast fermentation on synthetic media and on agro-industrial waste and by-products: a review. Foods (Basel, Switzerland), 2022, 11(1): 109.
[5] Fan T T, Wang M Y, Li J, et al. Exploration of yeast biodiversity and development of industrial applications. Chinese Journal of Biotechnology, 2021, 37(3): 806-815.
[6] Wang Y Q, Zhang H, Lu X Y, et al. Advances in 2-phenylethanol production from engineered microorganisms. Biotechnology Advances, 2019, 37(3): 403-409.
doi: 10.1016/j.biotechadv.2019.02.005
[7] Dai J, Li K, Song N, et al. Zygosaccharomyces rouxii, an aromatic yeast isolated from chili sauce, is able to biosynthesize 2-phenylethanol via the shikimate or Ehrlich pathways. Frontiers in Microbiology, 2020, 11: 597454.
doi: 10.3389/fmicb.2020.597454
[8] Sáenz D A, Chianelli M S, Stella C A. L-phenylalanine transport in Saccharomyces cerevisiae: participation of GAP1, BAP2, and AGP1. Journal of Amino Acids, 2014, 2014: 283962.
[9] Andrews F H, McLeish M J. Substrate specificity in thiamin diphosphate-dependent decarboxylases. Bioorganic Chemistry, 2012, 43: 26-36.
doi: 10.1016/j.bioorg.2011.12.001 pmid: 22245019
[10] Boer V M, Tai S L, Vuralhan Z, et al. Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Research, 2007, 7(4): 604-620.
doi: 10.1111/j.1567-1364.2007.00220.x
[11] Gu Y, Ma J B, Zhu Y L, et al. Refactoring Ehrlich pathway for high-yield 2-phenylethanol production in Yarrowia lipolytica. ACS Synthetic Biology, 2020, 9(3): 623-633.
doi: 10.1021/acssynbio.9b00468
[12] Zhu L H, Xu S, Li Y R, et al. Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering. PLoS One, 2021, 16(10): e0258180.
doi: 10.1371/journal.pone.0258180
[13] Dai J, Xia H L, Yang C L, et al. Sensing, uptake and catabolism of L-phenylalanine during 2-phenylethanol biosynthesis via the Ehrlich pathway in Saccharomyces cerevisiae. Frontiers in Microbiology, 2021, 12: 601963.
doi: 10.3389/fmicb.2021.601963
[14] Xu Z W. Research Square. [2021-04-01]. https://assets.researchsquare.com/files/rs-364472/v1/8e575bf8-8006-438c-906d-fd4dc0b8ab86.pdf?c=1637244634.
[15] Hassing E J, de Groot P A, Marquenie V R, et al. Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae. Metabolic Engineering, 2019, 56: 165-180.
doi: 10.1016/j.ymben.2019.09.011
[16] Kong S J, Pan H, Liu X Y, et al. De novo biosynthesis of 2-phenylethanol in engineered Pichia pastoris. Enzyme and Microbial Technology, 2020, 133: 109459.
doi: 10.1016/j.enzmictec.2019.109459
[17] Li M W, Lang X Y, Moran Cabrera M, et al. CRISPR-mediated multigene integration enables Shikimate pathway refactoring for enhanced 2-phenylethanol biosynthesis in Kluyveromyces marxianus. Biotechnology for Biofuels, 2021, 14(1): 3.
doi: 10.1186/s13068-020-01852-3
[18] Liu J B, Jiang J, Bai Y J, et al. Mimicking a new 2-phenylethanol production pathway from Proteus mirabilis JN458 in Escherichia coli. Journal of Agricultural and Food Chemistry, 2018, 66(13): 3498-3504.
doi: 10.1021/acs.jafc.8b00627
[19] Hwang J Y, Park J, Seo J H, et al. Simultaneous synthesis of 2-phenylethanol and L-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway. Biotechnology and Bioengineering, 2009, 102(5): 1323-1329.
doi: 10.1002/bit.22178
[20] Wang P C, Yang X W, Lin B X, et al. Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol. Metabolic Engineering, 2017, 44: 143-149.
doi: 10.1016/j.ymben.2017.09.013
[21] Yang C, Liu Y S, Liu W Q, et al. Designing modular cell-free systems for tunable biotransformation of l-phenylalanine to aromatic compounds. Frontiers in Bioengineering and Biotechnology, 2021, 9: 730663.
doi: 10.3389/fbioe.2021.730663
[22] Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008, 451(7174): 86-89.
doi: 10.1038/nature06450
[23] Achmon Y, Ben-Barak Zelas Z, Fishman A. Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system. Applied Microbiology and Biotechnology, 2014, 98(8): 3603-3611.
doi: 10.1007/s00253-013-5269-z pmid: 24081322
[24] Machas M S, McKenna R, Nielsen D R. Expanding upon styrene biosynthesis to engineer a novel route to 2-phenylethanol. Biotechnology Journal, 2017, 12(10): 1700310.
doi: 10.1002/biot.201700310
[25] Zhang H B, Cao M L, Jiang X L, et al. De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087. BMC Biotechnology, 2014, 14: 30.
doi: 10.1186/1472-6750-14-30
[26] Liu C Q, Zhang K, Cao W Y, et al. Genome mining of 2-phenylethanol biosynthetic genes from Enterobacter sp. CGMCC 5087 and heterologous overproduction in Escherichia coli. Biotechnology for Biofuels, 2018, 11: 305.
doi: 10.1186/s13068-018-1297-3
[27] Kang Z, Zhang C Z, Du G C, et al. Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose. Applied Biochemistry and Biotechnology, 2014, 172(4): 2012-2021.
doi: 10.1007/s12010-013-0659-3
[28] Song M K, Cho A R, Sim G, et al. Synthesis of diverse hydroxycinnamoyl phenylethanoid esters using Escherichia coli. Journal of Agricultural and Food Chemistry, 2019, 67(7): 2028-2035.
doi: 10.1021/acs.jafc.9b00041
[29] Jin D F, Gu B T, Xiong D W, et al. A transcriptomic analysis of Saccharomyces cerevisiae under the stress of 2-phenylethanol. Current Microbiology, 2018, 75(8): 1068-1076.
doi: 10.1007/s00284-018-1488-y
[30] Zhan Y Y, Zhou M L, Wang H, et al. Efficient synthesis of 2-phenylethanol from L-phenylalanine by engineered Bacillus licheniformis using molasses as carbon source. Applied Microbiology and Biotechnology, 2020, 104(17): 7507-7520.
doi: 10.1007/s00253-020-10740-7
[31] Wang H, Dong Q F, Guan A, et al. Synergistic inhibition effect of 2-phenylethanol and ethanol on bioproduction of natural 2-phenylethanol by Saccharomyces cerevisiae and process enhancement. Journal of Bioscience and Bioengineering, 2011, 112(1): 26-31.
doi: 10.1016/j.jbiosc.2011.03.006
[32] Tian S F, Liang X L, Chen J, et al. Enhancement of 2-phenylethanol production by a wild-type Wickerhamomyces anomalus strain isolated from rice wine. Bioresource Technology, 2020, 318: 124257.
doi: 10.1016/j.biortech.2020.124257
[33] Yan W, Zhang S J, Wu M, et al. The draft genome sequence of Meyerozyma guilliermondii strain YLG18, a yeast capable of producing and tolerating high concentration of 2-phenylethanol. 3 Biotech, 2019, 9(12): 441.
doi: 10.1007/s13205-019-1975-2
[34] Lu X Y, Wang Y Q, Zong H, et al. Bioconversion of L-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002-5. Bioengineered, 2016, 7(6): 418-423.
doi: 10.1080/21655979.2016.1171437
[35] Hua D L, Xu P. Recent advances in biotechnological production of 2-phenylethanol. Biotechnology Advances, 2011, 29(6): 654-660.
doi: 10.1016/j.biotechadv.2011.05.001
[36] Chreptowicz K, Mierzejewska J. Enhanced bioproduction of 2-phenylethanol in a biphasic system with rapeseed oil. New Biotechnology, 2018, 42: 56-61.
doi: S1871-6784(17)30109-7 pmid: 29476815
[37] Stark D, Münch T, Sonnleitner B, et al. Extractive bioconversion of 2-phenylethanol from l-phenylalanine by Saccharomyces cerevisiae. Biotechnology Progress, 2002, 18(3): 514-523.
pmid: 12052068
[38] Qian X J, Yan W, Zhang W M, et al. Current status and perspectives of 2-phenylethanol production through biological processes. Critical Reviews in Biotechnology, 2019, 39(2): 235-248.
doi: 10.1080/07388551.2018.1530634
[39] Wang Z Y, Jiang M Y, Guo X N, et al. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae. Microbial Cell Factories, 2018, 17(1): 60.
doi: 10.1186/s12934-018-0907-x
[40] 唐堂, 王琪, 周卫强, 等. 固态发酵技术研究分析及应用. 工业微生物, 2020, 50(5): 55-59.
Tang T, Wang Q, Zhou W Q, et al. Research analysis and application of solid state fermentation technology. Industrial Microbiology, 2020, 50(5): 55-59.
[41] Dręzek K, Kozłowska J, Detman A, et al. Development of a continuous system for 2-phenylethanol bioproduction by yeast on whey permeate-based medium. Molecules (Basel, Switzerland), 2021, 26(23): 7388.
doi: 10.3390/molecules26237388
[1] 田方方,何博,吴毅. 基于酿酒酵母的大片段DNA组装与转移技术进展*[J]. 中国生物工程杂志, 2022, 42(7): 101-112.
[2] 张琦,唐璐瑶,何远志,张凯,祝加伟,崔莉,冯雁. 酵母脂肪酶分子进化及催化合成(S)-1,4-苯并二口恶烷*[J]. 中国生物工程杂志, 2022, 42(7): 35-44.
[3] 曹春蕾,余培斌,吴殿辉,蔡国林. 几株啤酒酵母的筛选及发酵性能比较*[J]. 中国生物工程杂志, 2022, 42(7): 45-53.
[4] 贾男,臧国伟,李春,王颖. 辅因子在微生物细胞工厂中的代谢调控与应用*[J]. 中国生物工程杂志, 2022, 42(7): 79-89.
[5] 于璐,胡暄,张小鹃,牛安娜,张晓鹏. 功能性新型冠状病毒RBD结构域在毕赤酵母表面的展示*[J]. 中国生物工程杂志, 2022, 42(6): 30-38.
[6] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[7] 刘明珠,张良,郭芳,李春,冯旭东. 酵母表面展示体系的构建及在纤维素降解中的应用*[J]. 中国生物工程杂志, 2022, 42(5): 91-99.
[8] 陈涛,刘志华,李霞,谢泽雄. 抑制剂耐受性酵母底盘细胞的设计与构建*[J]. 中国生物工程杂志, 2022, 42(1/2): 1-13.
[9] 李然,闫晓光,李伟国,梁冬梅,财音青格乐,乔建军. 高效合成倍半萜酿酒酵母的构建策略*[J]. 中国生物工程杂志, 2022, 42(1/2): 14-25.
[10] 张耀,邱晓曼,孙浩,郭蕾,洪厚胜. 酿酒酵母的工业化应用[J]. 中国生物工程杂志, 2022, 42(1/2): 26-36.
[11] 戢传富,王璐,苟敏,宋文枫,夏子渊,汤岳琴. 黄原胶生物合成及分子调控*[J]. 中国生物工程杂志, 2022, 42(1/2): 46-57.
[12] 李丁,李兰,安允飞,毕振威,于晓明,陈瑾,郑其升. 联合策略优化犬α干扰素的酵母表达*[J]. 中国生物工程杂志, 2022, 42(1/2): 88-95.
[13] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[14] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[15] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.