Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (9): 58-66    DOI: 10.13523/j.cb.2205051
综述     
mRNA疫苗非病毒载体递送系统研究进展*
金喆彤1,芮雪1,姜侯喆1,王晶晶1,**(),陈玉根2
1.南京中医药大学药学院 南京 210046
2.南京中医药大学附属医院 南京 210029
Research Progress of Non-viral Vector Delivery System for mRNA Vaccines
JIN Zhe-tong1,RUI Xue1,JIANG Hou-zhe1,WANG Jing-jing1,**(),CHEN Yu-gen2
1. College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
2. The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
 全文: PDF(982 KB)   HTML
摘要:

新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19)疫情的暴发导致全球迫切需要大量有效的疫苗来应对。mRNA疫苗具有良好的安全性,且研发周期短,成为目前最有潜力的疫苗之一,在传染病和肿瘤研究领域也引发了更多关注。随着技术创新,mRNA不稳定性、翻译效率低等缺点得到较大改善。如何安全高效地将mRNA递送至靶细胞仍是阻碍mRNA研究的一大挑战。综述目前应用于mRNA疫苗体内递送的非病毒载体递送系统,以及mRNA在传染病疫苗和肿瘤疫苗中的应用现状,旨在为mRNA疫苗研发提供参考。

关键词: mRNA疫苗非病毒载体递送系统脂质纳米粒聚合物    
Abstract:

With the outbreak of COVID-19, the world urgently needs a large number of effective vaccines to deal with this disaster. mRNA vaccines are safe and have short development cycle, which can fill the gap between epidemic diseases and vaccine shortages. So mRNA has become one of the most potential vaccines at present and has attracted attention in the field of infectious diseases and tumors. Technological innovation has greatly improved the shortcomings of mRNA, such as instability and low translation efficiency. However, delivering mRNA to target cells safely and efficiently is still a major challenge that hinders the progress in mRNA research. Hopefully, delivery systems have put forward many effective solutions. This review focuses on the non-viral vector delivery system for mRNA vaccine delivery in vivo, and the application of mRNA in infectious disease and tumor vaccine, in order to provide reference for research and development of mRNA vaccines.

Key words: mRNA vaccine    Non-viral vector    Delivery system    Lipid nanoparticles    Polymer
收稿日期: 2022-05-30 出版日期: 2022-10-10
ZTFLH:  R94R186  
基金资助: * 国家自然科学基金(32000997);江苏省高等学校自然科学研究基金(20KJB350004)
通讯作者: 王晶晶     E-mail: wangjingjing@njucm.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
金喆彤
芮雪
姜侯喆
王晶晶
陈玉根

引用本文:

金喆彤,芮雪,姜侯喆,王晶晶,陈玉根. mRNA疫苗非病毒载体递送系统研究进展*[J]. 中国生物工程杂志, 2022, 42(9): 58-66.

JIN Zhe-tong,RUI Xue,JIANG Hou-zhe,WANG Jing-jing,CHEN Yu-gen. Research Progress of Non-viral Vector Delivery System for mRNA Vaccines. China Biotechnology, 2022, 42(9): 58-66.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2205051        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I9/58

图1  应用于RNA疫苗的非病毒载体递送系统
疫苗名称 适应症 公司名称 研发阶段
ARCoV COVID-19 沃森生物 Ⅲ期临床
SW0123 COVID-19 斯微生物 Ⅱ期临床
LVRNA009 COVID-19 艾美疫苗 Ⅱ期临床
PTX-COVID19-B COVID-19 云顶新耀 Ⅱ期临床
SYS6006 COVID-19 石药集团 Ⅰ期临床
mRNA vaccine(COVID-19, delta/omicron variant) COVID-19 锐博生物 Ⅰ期临床
anti-SARS-CoV-2 mRNA lipid nanoparticle vaccine COVID-19 康希诺生物 Ⅰ期临床
R520A COVID-19 瑞科生物 Ⅰ期临床
表1  中国进入临床试验阶段的COVID-19 mRNA疫苗
疫苗名称 适应症 公司名称 研发阶段
mRNA-1893 寨卡病毒 Moderna Ⅰ期临床
mRNA-1325 寨卡病毒 Moderna Ⅰ期临床
mRNA-1345 呼吸道合胞病毒 Moderna Ⅰ期临床
mRNA-1851 甲型流感病毒H7N9亚型 Moderna Ⅰ期临床
mRNA-1440 甲型流感病毒H10N8亚型 Moderna Ⅰ期临床
MRT5400 甲型流感病毒H3N2亚型 Translate Bio Ⅰ期临床
mRNA-1944 奇昆古尼亚病毒 Moderna Ⅰ期临床
CV7201 狂犬病病毒 CureVac Ⅰ期临床
CV7202 狂犬病病毒 CureVac Ⅰ期临床
GSK3903133A 狂犬病病毒 GSK Ⅰ期临床
mRNA-1644 艾滋病病毒 Moderna Ⅰ期临床
mRNA-1644v2-Core 艾滋病病毒 Moderna Ⅰ期临床
mRNA-1574 艾滋病病毒 Moderna Ⅰ期临床
表2  针对传染性疾病的mRNA疫苗
疫苗名称 适应症 公司名称 研发阶段
BNT 111 黑色素瘤 BioNTech Ⅱ期临床
BNT 113 头颈瘤 BioNTech Ⅱ期临床
BNT 122 非小细胞肺癌、结直肠癌、黑色素瘤、三阴乳腺癌 BioNTech Ⅱ期临床
BNT 112 前列腺癌 BioNTech Ⅰ期临床
BNT 114 三阴乳腺癌 BioNTech Ⅰ期临床
BNT 115 卵巢癌 BioNTech Ⅰ期临床
NEO-PV-01 非小细胞肺癌、黑色素瘤、膀胱癌 BioNTech Ⅰ期临床
NEO-SV-01 乳腺癌 BioNTech Ⅰ期临床
mRNA-4157 实体瘤 Moderna Ⅱ期临床
mRNA-4650 胃肠道肿瘤、黑色素瘤、泌尿系统肿瘤 Moderna Ⅰ/Ⅱ期临床
mRNA-5671 胰腺癌、非小细胞肺癌、结直肠癌 Moderna Ⅰ期临床
CV9104 前列腺癌 CureVac Ⅱ期临床
CV9103 前列腺癌 CureVac Ⅰ/Ⅱ期临床
CV9201 非小细胞肺癌 CureVac Ⅰ/Ⅱ期临床
CV9202 非小细胞肺癌 CureVac Ⅰ/Ⅱ期临床
表3  BioNTech、Moderna和CureVac公司的mRNA肿瘤疫苗研究进展
[1] 孟子延, 马丹婧, 高雪, 等. mRNA疫苗及其作用机制的研究进展. 中国生物制品学杂志, 2021, 34(6): 740-744.
Meng Z Y, Ma D J, Gao X, et al. Progress in research on mRNA vaccine and its mechanism. Chinese Journal of Biologicals, 2021, 34(6): 740-744.
[2] Granot-Matok Y, Kon E, Dammes N, et al. Therapeutic mRNA delivery to leukocytes. Journal of Controlled Release, 2019, 305: 165-175.
doi: S0168-3659(19)30288-3 pmid: 31121277
[3] Iavarone C, O’hagan D T, Yu D, et al. Mechanism of action of mRNA-based vaccines. Expert Review of Vaccines, 2017, 16(9): 871-881.
doi: 10.1080/14760584.2017.1355245 pmid: 28701102
[4] Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Molecular Cancer, 2021, 20(1): 41.
doi: 10.1186/s12943-021-01335-5 pmid: 33632261
[5] Karikó K, Muramatsu H, Welsh F A, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy, 2008, 16(11): 1833-1840.
doi: 10.1038/mt.2008.200 pmid: 18797453
[6] Hao L, Wu Y Q, Zhang Y D, et al. Combinational PRR agonists in liposomal adjuvant enhances immunogenicity and protective efficacy in a tuberculosis subunit vaccine. Frontiers in Immunology, 2020, 11: 575504.
doi: 10.3389/fimmu.2020.575504
[7] Karikó K, Ni H P, Capodici J, et al. mRNA is an endogenous ligand for toll-like receptor 3. Journal of Biological Chemistry, 2004, 279(13): 12542-12550.
doi: 10.1074/jbc.M310175200 pmid: 14729660
[8] Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004, 303(5663): 1526-1529.
doi: 10.1126/science.1093620 pmid: 14976262
[9] Wang H X, Li M Q, Lee C M, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chemical Reviews, 2017, 117(15): 9874-9906.
doi: 10.1021/acs.chemrev.6b00799
[10] Weissman D. mRNA transcript therapy. Expert Review of Vaccines, 2015, 14(2): 265-281.
doi: 10.1586/14760584.2015.973859 pmid: 25359562
[11] Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics-developing a new class of drugs. Nature Reviews Drug Discovery, 2014, 13(10): 759-780.
doi: 10.1038/nrd4278 pmid: 25233993
[12] Hajj K A, Whitehead K A. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials, 2017, 2: 17056.
doi: 10.1038/natrevmats.2017.56
[13] 胡瞬, 易有金, 胡涛, 等. mRNA疫苗的开发及临床研究进展. 中国生物工程杂志, 2019, 39(11): 105-112.
Hu S, Yi Y J, Hu T, et al. Development and clinical progress of mRNA vaccine. China Biotechnology, 2019, 39(11): 105-112.
[14] Karikó K, Muramatsu H, Ludwig J, et al. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Research, 2011, 39(21): e142.
doi: 10.1093/nar/gkr695
[15] Li N, Hu Y L, He C X, et al. Preparation, characterisation and anti-tumour activity of Ganoderma lucidum polysaccharide nanoparticles. Journal of Pharmacy and Pharmacology, 2010, 62(1): 139-144.
doi: 10.1211/jpp.62.01.0016
[16] Andries O, Mc Cafferty S, de Smedt S C, et al. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2015, 217: 337-344.
doi: 10.1016/j.jconrel.2015.08.051
[17] Pardi N, Weissman D. Nucleoside modified mRNA vaccines for infectious diseases. Methods in Molecular Biology (Clifton, N J), 2017, 1499: 109-121.
[18] Anderson B R, Muramatsu H, Nallagatla S R, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Research, 2010, 38(17): 5884-5892.
doi: 10.1093/nar/gkq347 pmid: 20457754
[19] Kamimura K, Suda T, Zhang G S, et al. Advances in gene delivery systems. Pharmaceutical Medicine, 2011, 25(5): 293-306.
doi: 10.2165/11594020-000000000-00000 pmid: 22200988
[20] Nguyen G N, Everett J K, Kafle S, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nature Biotechnology, 2021, 39(1): 47-55.
doi: 10.1038/s41587-020-0741-7 pmid: 33199875
[21] Shirley J L, de Jong Y P, Terhorst C, et al. Immune responses to viral gene therapy vectors. Molecular Therapy, 2020, 28(3): 709-722.
doi: S1525-0016(20)30002-2 pmid: 31968213
[22] Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. Journal of Clinical and Diagnostic Research, 2015, 9(1): GE01-GE06.
[23] Hou X C, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 2021, 6(12): 1078-1094.
doi: 10.1038/s41578-021-00358-0
[24] Tros de Ilarduya C, Sun Y, Düzgüneᶊ N. Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences, 2010, 40(3): 159-170.
doi: 10.1016/j.ejps.2010.03.019 pmid: 20359532
[25] Ulkoski D, Bak A, Wilson J T, et al. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opinion on Drug Delivery, 2019, 16(11): 1149-1167.
doi: 10.1080/17425247.2019.1663822
[26] Zhong D G, Jiao Y P, Zhang Y, et al. Effects of the gene carrier polyethyleneimines on structure and function of blood components. Biomaterials, 2013, 34(1): 294-305.
doi: 10.1016/j.biomaterials.2012.09.060 pmid: 23069714
[27] Dahlman J E, Barnes C, Khan O F, et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nature Nanotechnology, 2014, 9(8): 648-655.
doi: 10.1038/nnano.2014.84 pmid: 24813696
[28] Tang G P, Guo H Y, Alexis F, et al. Low molecular weight polyethylenimines linked by beta-cyclodextrin for gene transfer into the nervous system. The Journal of Gene Medicine, 2006, 8(6): 736-744.
doi: 10.1002/jgm.874
[29] Venault A, Huang Y C, Lo J W, et al. Tunable PEGylation of branch-type PEI/DNA polyplexes with a compromise of low cytotoxicity and high transgene expression: in vitro and in vivo gene delivery. Journal of Materials Chemistry B, 2017, 5(24): 4732-4744.
doi: 10.1039/c7tb01046j pmid: 32264316
[30] Xue L, Yan Y F, Kos P, et al. PEI fluorination reduces toxicity and promotes liver-targeted siRNA delivery. Drug Delivery and Translational Research, 2021, 11(1): 255-260.
doi: 10.1007/s13346-020-00790-9
[31] Ren J, Cao Y M, Li L, et al. Self-assembled polymeric micelle as a novel mRNA delivery carrier. Journal of Controlled Release, 2021, 338: 537-547.
doi: 10.1016/j.jconrel.2021.08.061 pmid: 34481924
[32] Li M, Li Y, Peng K, et al. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses. Acta Biomaterialia, 2017, 64: 237-248.
doi: S1742-7061(17)30635-9 pmid: 29030308
[33] Liu Y, Li Y F, Keskin D, et al. Poly(β-amino esters): synthesis, formulations, and their biomedical applications. Advanced Healthcare Materials, 2019, 8(2): e1801359.
[34] Patel A K, Kaczmarek J C, Bose S M, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Advanced Materials (Deerfield Beach, Fla), 2019, 31(8): e1805116.
[35] Dong Y Z, Siegwart D J, Anderson D G. Strategies, design, and chemistry in siRNA delivery systems. Advanced Drug Delivery Reviews, 2019, 144: 133-147.
doi: S0169-409X(19)30054-7 pmid: 31102606
[36] Cullis P R, Hope M J. Lipid nanoparticle systems for enabling gene therapies. Molecular Therapy, 2017, 25(7): 1467-1475.
doi: S1525-0016(17)30111-9 pmid: 28412170
[37] Cheng X W, Lee R J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews, 2016, 99: 129-137.
doi: S0169-409X(16)30053-9 pmid: 26900977
[38] Hirko A, Tang F X, Hughes J A. Cationic lipid vectors for plasmid DNA delivery. Current Medicinal Chemistry, 2003, 10(14): 1185-1193.
doi: 10.2174/0929867033457412
[39] Colosimo A, Serafino A, Sangiuolo F, et al. Gene transfection efficiency of tracheal epithelial cells by DC-Chol-DOPE/DNA complexes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1999, 1419(2): 186-194.
doi: 10.1016/S0005-2736(99)00067-X
[40] 高晓佩, 管晓燕, 白国辉, 等. DNA疫苗的作用机制. 中国组织工程研究, 2018, 22(8): 1281-1286.
Gao X P, Guan X Y, Bai G H, et al. DNA vaccines: mechanisms of action. Chinese Journal of Tissue Engineering Research, 2018, 22(8): 1281-1286.
[41] Fenton O S, Kauffman K J, McClellan R L, et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Advanced Materials (Deerfield Beach, Fla), 2016, 28(15): 2939-2943.
doi: 10.1002/adma.201505822
[42] McKinlay C J, Benner N L, Haabeth O A, et al. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): E5859-E5866.
[43] Heyes J, Palmer L, Bremner K, et al. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. Journal of Controlled Release, 2005, 107(2): 276-287.
pmid: 16054724
[44] Semple S C, Akinc A, Chen J X, et al. Rational design of cationic lipids for siRNA delivery. Nature Biotechnology, 2010, 28(2): 172-176.
doi: 10.1038/nbt.1602 pmid: 20081866
[45] Kauffman K J, Dorkin J R, Yang J H, et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Letters, 2015, 15(11): 7300-7306.
doi: 10.1021/acs.nanolett.5b02497 pmid: 26469188
[46] Dong Y Z, Love K T, Dorkin J R, et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 3955-3960.
[47] Rybakova Y, Kowalski P S, Huang Y X, et al. mRNA delivery for therapeutic anti-HER2 antibody expression in vivo. Molecular Therapy, 2019, 27(8): 1415-1423.
doi: S1525-0016(19)30226-6 pmid: 31160223
[48] Scheel B, Teufel R, Probst J, et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. European Journal of Immunology, 2005, 35(5): 1557-1566.
pmid: 15832293
[49] Armbruster N, Jasny E, Petsch B. Advances in RNA vaccines for preventive indications: a case study of A vaccine against rabies. Vaccines, 2019, 7(4): 132.
doi: 10.3390/vaccines7040132
[50] Mai Y P, Guo J S, Zhao Y, et al. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cellular Immunology, 2020, 354: 104143.
doi: 10.1016/j.cellimm.2020.104143
[51] Oladimeji O, Akinyelu J, Singh M. Co-polymer functionalised gold nanoparticles show efficient mitochondrial targeted drug delivery in cervical carcinoma cells. Journal of Biomedical Nanotechnology, 2020, 16(6): 853-866.
doi: 10.1166/jbn.2020.2930 pmid: 33187581
[52] Kaczmarek J C, Kauffman K J, Fenton O S, et al. Optimization of a degradable polymer-lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells. Nano Letters, 2018, 18(10): 6449-6454.
doi: 10.1021/acs.nanolett.8b02917 pmid: 30211557
[53] Polack F P, Thomas S J, Kitchin N, et al. Safety and efficacy of the BNT162b 2 mRNA covid-19 vaccine. The New England Journal of Medicine, 2020, 383(27): 2603-2615.
doi: 10.1056/NEJMoa2034577
[54] Baden L R, El Sahly H M, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. Annals of Internal Medicine, 2021, 384(5): 403-416.
[55] Chen G L, Li X F, Dai X H, et al. Safety and immunogenicity of the SARS-CoV-2 ARCoV mRNA vaccine in Chinese adults: a randomised, double-blind, placebo-controlled, phase 1 trial. The Lancet Microbe, 2022, 3(3): e193-e202.
doi: 10.1016/S2666-5247(21)00280-9
[56] Zhang N N, Li X F, Deng Y Q, et al. A thermostable mRNA vaccine against COVID-19. Cell, 2020, 182(5): 1271-1283,e16.
doi: 10.1016/j.cell.2020.07.024
[57] Bahl K, Senn J J, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Molecular Therapy, 2017, 25(6): 1316-1327.
doi: S1525-0016(17)30156-9 pmid: 28457665
[58] Freyn A W, Ramos da Silva J, Rosado V C, et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Molecular Therapy, 2020, 28(7): 1569-1584.
doi: S1525-0016(20)30199-4 pmid: 32359470
[59] Mu Z K, Haynes B F, Cain D W. HIV mRNA vaccines-progress and future paths. Vaccines, 2021, 9(2): 134.
doi: 10.3390/vaccines9020134
[60] Medina-Magües L G, Gergen J, Jasny E, et al. mRNA vaccine protects against zika virus. Vaccines, 2021, 9(12): 1464.
doi: 10.3390/vaccines9121464
[61] Zhang R, Billingsley M M, Mitchell M J. Biomaterials for vaccine-based cancer immunotherapy. Journal of Controlled Release, 2018, 292: 256-276.
doi: S0168-3659(18)30579-0 pmid: 30312721
[62] Rausch S, Schwentner C, Stenzl A, et al. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Human Vaccines & Immunotherapeutics, 2014, 10(11): 3146-3152.
[63] Sahin U, Oehm P, Derhovanessian E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature, 2020, 585(7823): 107-112.
doi: 10.1038/s41586-020-2537-9
[64] Schmidt M, Bolte S, Frenzel K, et al. Abstract OT2-06-01: highly innovative personalized RNA-immunotherapy for patients with triple negative breast cancer. Cancer Research, 2019, 79(4_Supplement): OT2-06-01.
[65] Liu L N, Wang Y H, Miao L, et al. Combination immunotherapy of MUC 1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Molecular Therapy, 2018, 26(1): 45-55.
doi: 10.1016/j.ymthe.2017.10.020
[66] Lin Y X, Wang Y, Ding J X, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Science Translational Medicine, 2021, 13(599): eaba9772.
doi: 10.1126/scitranslmed.aba9772
[1] 赵冰,麻淳博,孙冰冰,赵海洋. 智能胰岛素递送系统用于糖尿病治疗的研究进展[J]. 中国生物工程杂志, 2022, 42(5): 81-90.
[2] 井汇源,段二珍,董望. 体外转录的自我复制型mRNA疫苗研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 25-30.
[3] 刘子儒,张甜. 聚多巴胺改性聚合物在神经修复中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 57-64.
[4] 秦思楠,唐录华,高文惠. 恩诺沙星分子印迹电化学传感器的制备及其在食品快速检测中的应用 *[J]. 中国生物工程杂志, 2019, 39(3): 65-74.
[5] 胡瞬,易有金,胡涛,李福胜. mRNA疫苗的开发及临床研究进展[J]. 中国生物工程杂志, 2019, 39(11): 105-112.
[6] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[7] 周忠厅, 张权, 王胜涛, 蔡颖, 中西秀树, 尹健. 共价连接BODIPY光敏剂的聚合物纳米胶束及其靶向光动力疗效的研究[J]. 中国生物工程杂志, 2017, 37(10): 33-41.
[8] 代爽, 赵青青, 邱峰. PEI-壳聚糖在结肠癌细胞CD133+梯度表达的转染研究[J]. 中国生物工程杂志, 2016, 36(6): 32-38.
[9] 罗彦凤 刘钊 李永刚 王远亮. 人脐静脉内皮细胞在D,L-聚乳酸基形状记忆聚合物上的黏附和增殖行为研究[J]. 中国生物工程杂志, 2010, 30(05): 1-5.
[10] 王海,王华茂,李锦军,石必枝,李宗海. 一种靶向性阳离子多肽载体的表达纯化[J]. 中国生物工程杂志, 2007, 27(11): 57-60.
[11] 金科铭,曹学君,庄英萍,储炬,张嗣良. 固定化青霉素酰化酶在光-pH敏感可回用两水相中裂解青霉素G为6-APA[J]. 中国生物工程杂志, 2007, 27(10): 53-58.
[12] 孙恩杰, 杨冬. 非病毒型基因载体研究进展[J]. 中国生物工程杂志, 2004, 24(4): 21-25.
[13] 陈国强, 赵锴. 生物工程与生物材料[J]. 中国生物工程杂志, 2002, 22(5): 1-8.
[14] 肖娟, 陆华中, 邹萍. 树枝状聚合物在生物医学领域的应用进展[J]. 中国生物工程杂志, 2002, 22(4): 6-11.
[15] . 制造业、生物加工[J]. 中国生物工程杂志, 1998, 18(S1): 29-38.