Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (10): 57-64    DOI: 10.13523/j.cb.2006033
综述     
聚多巴胺改性聚合物在神经修复中的研究进展 *
刘子儒,张甜()
武汉理工大学化学化工与生命科学学院 武汉 430070
Research Progress of Polydopamine Modified Polymers in Nerve Repair
LIU Zi-ru,ZHANG Tian()
School of Chemistry,Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070,China
 全文: PDF(965 KB)   HTML
摘要:

多巴胺在碱性条件下会发生自聚合生成聚多巴胺。由于聚多巴胺具有超强黏附性能,在过去几年中其被大量应用于修饰各类生物材料。神经修复中使用的材料多为聚合物,但单独使用聚合物修复神经的效果不佳。聚多巴胺改性聚合物的亲水性和生物相容性均优于单一聚合物。除此以外,聚合物上的聚多巴胺涂层还可用于进一步修饰促进神经修复的分子。综述了聚多巴胺的合成机理、性能以及聚多巴胺改性各类聚合物在神经修复中的研究进展,并展望了该类材料的发展前景。

关键词: 聚多巴胺聚合物神经修复    
Abstract:

Inspired by the adhesion of mussels, the researchers found that dopamine self-polymerizes to form polydopamine under alkaline conditions. Due to its strong adhesion properties, polydopamine has been widely used to modify various biological materials in the past few years. Most of the materials used in nerve repair are polymers, but the effect of using polymers alone to repair nerves is not good. Polydopamine modified polymers have better hydrophilicity and biocompatibility than single polymers. In addition, the polydopamine coating on the polymer can be used to further modify the molecules that promote nerve repair. This article reviews the synthesis mechanism and performance of polydopamine and the research progress of polydopamine-modified polymers in nerve repair, and at the end of the article, the development prospects of such materials are prospected.

Key words: Polydopamine    Polymer    Nerve repair
收稿日期: 2020-06-22 出版日期: 2020-11-10
ZTFLH:  R318.08  
基金资助: * 国家中组部“青年千人计划”(40127002)
通讯作者: 张甜     E-mail: tzhang@whut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘子儒
张甜

引用本文:

刘子儒,张甜. 聚多巴胺改性聚合物在神经修复中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 57-64.

LIU Zi-ru,ZHANG Tian. Research Progress of Polydopamine Modified Polymers in Nerve Repair. China Biotechnology, 2020, 40(10): 57-64.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2006033        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I10/57

图1  聚多巴胺改性聚合物材料示意图
[1] Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: from fabrication of nerve conduit to in vivo nerve regeneration assays. Journal of Tissue Engineering and Regenerative Medicine, 2019,13(11):2077-2100.
doi: 10.1002/term.2945 pmid: 31350868
[2] Braga Silva J, Marchese G M, Cauduro C G, et al. Nerve conduits for treating peripheral nerve injuries: a systematic literature review. Hand Surgery and Rehabilitation, 2017,36(2):71-85.
doi: 10.1016/j.hansur.2016.10.212 pmid: 28325431
[3] Raza C, Riaz H A, Anjum R, et al. Repair strategies for injured peripheral nerve: review. Life Sciences, 2020,243:117308.
doi: 10.1016/j.lfs.2020.117308 pmid: 31954163
[4] Houshyar S, Bhattacharyya A, Shanks R. Peripheral nerve conduit: materials and structures. ACS Chemical Neuroscience, 2019,10(8):3349-3365.
doi: 10.1021/acschemneuro.9b00203 pmid: 31273975
[5] Belkas J S, Shoichet M S, Midha R. Peripheral nerve regeneration through guidance tubes. Neurological Research, 2004,26(2):151-160.
doi: 10.1179/016164104225013798 pmid: 15072634
[6] Sarker M, Naghieh S, Mcinnes A D, et al. Strategic design and fabrication of nerve guidance conduits for peripheral nerve regeneration. Biotechnology Journal, 2018,13(7):1700635.
[7] Muheremu A, Ao Q. Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. BioMed Research International, 2015,2015:237507.
doi: 10.1155/2015/237507 pmid: 26491662
[8] Rebowe R, Rogers A, Yang X, et al. Nerve repair with nerve conduits: problems, solutions, and future directions. Journal of Hand and Microsurgery, 2018,10(2):61-65.
doi: 10.1055/s-0038-1626687 pmid: 30154617
[9] Zhou C, Liu B, Huang Y, et al. The effect of four types of artificial nerve graft structures on the repair of 10-mm rat sciatic nerve gap. Journal of Biomedical Materials Research Part A, 2017,105(11):3077-3085.
doi: 10.1002/jbm.a.36172 pmid: 28782192
[10] Sarker M D, Naghieh S, Mcinnes A D, et al. Regeneration of peripheral nerves by nerve guidance conduits: influence of design, biopolymers, cells, growth factors, and physical stimuli. Progress in Neurobiology, 2018,171:125-150.
doi: 10.1016/j.pneurobio.2018.07.002 pmid: 30077776
[11] Ryu J H, Messersmith P B, Lee H. Polydopamine surface chemistry: a decade of discovery. ACS Applied Materials & Interfaces, 2018,10(9):7523-7540.
doi: 10.1021/acsami.7b19865 pmid: 29465221
[12] Kang S M, You I, Cho W K, et al. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angewandte Chemie International Edition, 2010,49(49):9401-9404.
doi: 10.1002/anie.201004693 pmid: 21031386
[13] Liang R P, Meng X Y, Liu C M, et al. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis, 2011,32(23):3331-3340.
doi: 10.1002/elps.201100403 pmid: 22134977
[14] Silverman H G, Roberto F F. Understanding marine mussel adhesion. Marine Biotechnology (New York, N.Y.), 2007,9(6):661-681.
[15] Madhurakkat Perikamana S K, Lee J, Lee Y B, et al. Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromolecules, 2015,16(9):2541-2555.
doi: 10.1021/acs.biomac.5b00852 pmid: 26280621
[16] Kwon I S, Bettinger C J. Polydopamine nanostructures as biomaterials for medical applications. Journal of Materials Chemistry B, 2018,6(43):6895-6903.
doi: 10.1039/C8TB02310G pmid: 31105962
[17] Lee H, Lee Y, Statz A R, et al. Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Advanced Materials, 2008,20(9):1619-1623.
doi: 10.1002/(ISSN)1521-4095 pmid: 22228925
[18] Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007,318(5849):426-430.
doi: 10.1126/science.1147241 pmid: 17947576
[19] 陈丽娟, 汪君, 闫叶寒, 等. 聚多巴胺涂层的研究与应用进展. 高分子通报, 2018(07):42-49.
Chen L J, Wang J, Yan Y H, et al. The progress of research and application of polydopamine coatings. Polymer Bulletin, 2018(7):42-49.
[20] Wei Q, Zhang F, Li J, et al. Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry, 2010,1(9):1430-1433.
[21] Ding Y H, Floren M, Tan W. Mussel-inspired polydopamine for bio-surface functionalization. Biosurf Biotribol, 2016,2(4):121-136.
doi: 10.1016/j.bsbt.2016.11.001 pmid: 29888337
[22] Lee H A, Ma Y, Zhou F, et al. Material-independent surface chemistry beyond polydopamine coating. Accounts of Chemical Research, 2019,52(3):704-713.
doi: 10.1021/acs.accounts.8b00583 pmid: 30835432
[23] D’ischia M, Napolitano A, Pezzella A, et al. Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angewandte Chemie International Edition, 2009,48(22):3914-3921.
doi: 10.1002/anie.200803786 pmid: 19294706
[24] Dreyer D R, Miller D J, Freeman B D, et al. Elucidating the structure of poly(dopamine). Langmuir, 2012,28(15):6428-6435.
doi: 10.1021/la204831b pmid: 22475082
[25] Hong S, Na Y S, Choi S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Advanced Functional Materials, 2012,22(22):4711-4717.
[26] 赵晨旭, 谢银红, 廖芝建, 等. 聚多巴胺对材料表面功能化的研究及应用进展. 高分子通报, 2015(12):28-37.
Zhao C X, Xie Y H, Liao Z J, et al. The research and application progress of polydopamine on the material surface functionalization. Polymer Bulletin, 2015(12):28-37.
[27] Sever M J, Weisser J T, Monahan J, et al. Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angewandte Chemie International Edition, 2004,43(4):448-450.
doi: 10.1002/anie.200352759 pmid: 14735531
[28] Ye Q, Zhou F, Liu W. Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews, 2011,40(7):4244-4258.
doi: 10.1039/c1cs15026j pmid: 21603689
[29] Lee H, Scherer N F, Messersmith P B. Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 2006,103(35):12999-13003.
[30] Yang H, Lan Y, Zhu W, et al. Polydopamine-coated nanofibrous mats as a versatile platform for producing porous functional membranes. Journal of Materials Chemistry, 2012,22(33):16994-17001.
[31] Ku S H, Ryu J, Hong S K, et al. General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials, 2010,31(9):2535-2541.
doi: 10.1016/j.biomaterials.2009.12.020 pmid: 20061015
[32] Ku S H, Park C B. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials, 2010,31(36):9431-9437.
doi: 10.1016/j.biomaterials.2010.08.071 pmid: 20880578
[33] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用. 化学进展, 2015,27(Z1):212-219.
Liu Z G, Qu S X, Weng J. Application of polydopamine in surface modification of biomaterials. Progress in Chemistry, 2015,27(Z1):212-219.
[34] Ou J, Wang J, Liu S, et al. Microtribological and electrochemical corrosion behaviors of polydopamine coating on APTS-SAM modified Si substrate. Applied Surface Science, 2009,256(3):894-899.
[35] Shin Y M, Lee Y B, Shin H. Time-dependent mussel-inspired functionalization of poly(l-lactide-co-ε-caprolactone) substrates for tunable cell behaviors. Colloids and Surfaces B: Biointerfaces, 2011,87(1):79-87.
doi: 10.1016/j.colsurfb.2011.05.004 pmid: 21605961
[36] Lin S, Chen C-T, Bdikin I, et al. Tuning heterogeneous poly(dopamine) structures and mechanics: in silico covalent cross-linking and thin film nanoindentation. Soft Matter, 2014,10(3):457-464.
doi: 10.1039/c3sm51810h pmid: 24651666
[37] Bourmaud A, Riviere J, Le Duigou A, et al. Investigations of the use of a mussel-inspired compatibilizer to improve the matrix-fiber adhesion of a biocomposite. Polymer Testing, 2009,28(6):668-672.
[38] Luo R, Tang L, Zhong S, et al. In vitro investigation of enhanced hemocompatibility and endothelial cell proliferation associated with quinone-rich polydopamine coating. ACS Applied Materials & Interfaces, 2013,5(5):1704-1714.
doi: 10.1021/am3027635 pmid: 23384031
[39] Liu Y, Ai K, Liu J, et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Advanced Materials, 2013,25(9):1353-1359.
doi: 10.1002/adma.201204683 pmid: 23280690
[40] Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 2014,114(9):5057-5115.
doi: 10.1021/cr400407a pmid: 24517847
[41] Bettinger C J, Bruggeman J P, Misra A, et al. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials, 2009,30(17):3050-3057.
doi: 10.1016/j.biomaterials.2009.02.018 pmid: 19286252
[42] Jia X, Ma Z Y, Zhang G X, et al. Polydopamine film coated controlled-release multielement compound fertilizer based on mussel-inspired chemistry. Journal of Agricultural and Food Chemistry, 2013,61(12):2919-2924.
doi: 10.1021/jf3053059 pmid: 23464683
[43] Ball V. Composite materials and films based on melanins, polydopamine, and other catecholamine-based materials. Biomimetics, 2017,2(3).
doi: 10.3390/biomimetics2030009 pmid: 31105172
[44] Darsalia V, Kallur T, Kokaia Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. European Journal of Neuroscience, 2007,26(3):605-614.
doi: 10.1111/j.1460-9568.2007.05702.x pmid: 17686040
[45] Ziv Y, Avidan H, Pluchino S, et al. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proceedings of the National Academy of Sciences, 2006,103(35):13174-13179.
[46] 崔学文, 陆浩, 吕德民, 等. SHH修饰聚多巴胺涂层纤维蛋白支架对大鼠神经干细胞的影响. 神经解剖学杂志, 2020,36(1):15-22.
Cui X W, Lu H, Lv D M, et al. Polydopamine-mediated surface modification of fibrin scaffold with SHH coating for rat neural stem cell engineering. Chinese Journal of Neuroanatomy, 2020,36(1):15-22.
[47] Yang K, Lee J S, Kim J, et al. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012,33(29):6952-6964.
doi: 10.1016/j.biomaterials.2012.06.067 pmid: 22809643
[48] 齐治平, 杨利丽, 潘肃, 等. 聚多巴胺改性的纺丝膜复合胰岛素样生长因子-1对神经干细胞的作用. 中华实验外科杂志, 2019,36(8):1492.
Qi Z P, Yang L L, Pan S, et al. The effect of polydopamine modified nanofibers combined with insulin-like growth factors-1 on neural stem cells. Chinese Journal of Experimental Surgery, 2019,36(8):1492.
[49] Schmidt C E, Leach J B. Neural tissue engineering: strategies for repair and regeneration. Annual Review of Biomedical Engineering, 2003,5(1):293-347.
[50] Li Y, Huang Z, Pu X, et al. Polydopamine/carboxylic graphene oxide-composited polypyrrole films for promoting adhesion and alignment of Schwann cells. Colloids and Surfaces B: Biointerfaces, 2020,191:110972.
doi: 10.1016/j.colsurfb.2020.110972 pmid: 32203860
[51] Chen Y W, Chen C C, Ng Y H, et al. Additive manufacturing of nerve decellularized extracellular matrix-contained polyurethane conduits for peripheral nerve regeneration. Polymers, 2019,11(10).
pmid: 31640189
[52] Chen C C, Yu J, Ng H Y, et al. The physicochemical properties of decellularized extracellular matrix-coated 3D printed poly(ε-caprolactone) nerve conduits for promoting schwann cells proliferation and differentiation. Materials, 2018,11(9).
doi: 10.3390/ma11091767 pmid: 30231563
[53] Bhang S H, Kwon S H, Lee S, et al. Enhanced neuronal differentiation of pheochromocytoma 12 cells on polydopamine-modified surface. Biochemical and Biophysical Research Communications, 2013,430(4):1294-1300.
doi: 10.1016/j.bbrc.2012.11.123 pmid: 23261471
[54] Chen C H, Tsai C C, Wu P T, et al. Modulation of neural differentiation through submicron-grooved topography surface with modified polydopamine. ACS Applied Bio Materials, 2018,2(1):205-216.
[55] Nazeri N, Tajerian R, Arabpour Z, et al. Bioinspired immobilization of carbon nanotubes on scaffolds for nerve regeneration. Bioinspired, Biomimetic and Nanobiomaterials, 2019,8(3):198-205.
[56] Qian Y, Song J, Zheng W, et al. 3D manufacture of gold nanocomposite channels facilitates neural differentiation and regeneration. Advanced Functional Materials, 2018,28(14):1707077.
[57] Qian Y, Zhao X, Han Q, et al. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat Commun, 2018,9(1):323.
doi: 10.1038/s41467-017-02598-7 pmid: 29358641
[58] Kim S, Jang L K, Jang M, et al. Electrically conductive polydopamine-polypyrrole as high performance biomaterials for cell stimulation in vitro and electrical signal recording in vivo. ACS Applied Materials & Interfaces, 2018,10(39):33032-33042.
doi: 10.1021/acsami.8b11546 pmid: 30192136
[59] Wang Y, Tan H, Hui X. Biomaterial scaffolds in regenerative therapy of the central nervous system. BioMed Research International, 2018,2018:7848901.
doi: 10.1155/2018/7848901 pmid: 29805977
[60] 曹苏成, 徐晓峰, 陈奇, 等. 音猬因子缓释聚多巴胺纤维蛋白支架促进大鼠脊髓损伤的修复. 中国组织工程研究, 2020,24(28):4567-4572.
Cao S C, Xu X F, Chen Q, et al. Sonic hedgehog-polydopamine-fibrin scaffold promotes recovery of spinal cord injury in rats. Chinese Journal of Tissue Engineering Research, 2020,24(28):4567-4572.
[61] Pan S, Zhao Y, Qiao X, et al. PLGA porous scaffolds by polydopamine-assisted immobilization of NGF for spinal cord injury repair. Materials Research Express, 2019,6(4):045024.
[62] Chen S, Liu S, Zhang L, et al. Construction of injectable silk fibroin/polydopamine hydrogel for treatment of spinal cord injury. Chemical Engineering Journal, 2020,399:125795.
[1] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[2] 秦思楠,唐录华,高文惠. 恩诺沙星分子印迹电化学传感器的制备及其在食品快速检测中的应用 *[J]. 中国生物工程杂志, 2019, 39(3): 65-74.
[3] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[4] 周忠厅, 张权, 王胜涛, 蔡颖, 中西秀树, 尹健. 共价连接BODIPY光敏剂的聚合物纳米胶束及其靶向光动力疗效的研究[J]. 中国生物工程杂志, 2017, 37(10): 33-41.
[5] 罗彦凤 刘钊 李永刚 王远亮. 人脐静脉内皮细胞在D,L-聚乳酸基形状记忆聚合物上的黏附和增殖行为研究[J]. 中国生物工程杂志, 2010, 30(05): 1-5.
[6] 金科铭,曹学君,庄英萍,储炬,张嗣良. 固定化青霉素酰化酶在光-pH敏感可回用两水相中裂解青霉素G为6-APA[J]. 中国生物工程杂志, 2007, 27(10): 53-58.
[7] 陈国强, 赵锴. 生物工程与生物材料[J]. 中国生物工程杂志, 2002, 22(5): 1-8.
[8] 肖娟, 陆华中, 邹萍. 树枝状聚合物在生物医学领域的应用进展[J]. 中国生物工程杂志, 2002, 22(4): 6-11.
[9] . 制造业、生物加工[J]. 中国生物工程杂志, 1998, 18(S1): 29-38.
[10] 庄蕾, 陈冠军, 高培基. SIS聚合物在生物技术中的应用[J]. 中国生物工程杂志, 1998, 18(6): 58-62.
[11] 李刚. 90年代的生物催化[J]. 中国生物工程杂志, 1993, 13(4): 15-18.
[12] 罗明典. 发展生物聚合物工程的趋势[J]. 中国生物工程杂志, 1993, 13(4): 11-14.
[13] 陈素兰, 林剑, 李俊安, 郝静, 王文瑾. 胎脑中神经生长因子(NGF)的纯化及生物效应研究[J]. 中国生物工程杂志, 1993, 13(3): 51-51.
[14] 禾子. 有DNA功能的聚酰胺[J]. 中国生物工程杂志, 1992, 12(4): 60-61.
[15] 禾子. 有DNA功能的聚酰胺[J]. 中国生物工程杂志, 1992, 12(3): 60-61.