Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (5): 81-90    DOI: 10.13523/j.cb.2112019
综述     
智能胰岛素递送系统用于糖尿病治疗的研究进展
赵冰1,2,麻淳博1,2,3,孙冰冰4,赵海洋1,2,*()
1 温州大学生命科学研究院 温州 325035
2 温州市生物医药协同创新中心 温州 325035
3 温州医科大学第一临床医学院 温州 325035
4 大连理工大学化工学院 大连 116000
Research Progress of Intelligent Insulin Delivery System for Diabetes Treatment
ZHAO Bing1,2,MA Chun-bo1,2,3,SUN Bing-bing4,ZHAO Hai-yang1,2,*()
1 Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
2 Wenzhou Biomedical Collaborative Innovation Center, Wenzhou 325035, China
3 The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
4 Chemical Engineering Institute,Dalian University of Technology, Dalian 116000, China
 全文: PDF(2366 KB)   HTML
摘要:

糖尿病是继癌症和心血管疾病之后危害人类健康的第三大疾病。1型糖尿病或2型糖尿病治疗需要每日注射或持续输注外源性胰岛素,以调节体内血糖达到正常水平。然而目前胰岛素的治疗手段受到低血糖风险的限制。以生物材料为载体构建递送系统可提高胰岛素的生物利用度,减少不良反应的发生。因此,基于智能胰岛素递送系统的研究开发对提高胰岛素给药的可控性是必要的。对近年来胰岛素的不同给药方法进行综述,阐述智能胰岛素递送系统的作用机制,并探讨不同给药方法下智能胰岛素递送系统的研究现状及存在的问题。

关键词: 糖尿病胰岛素智能胰岛素递送系统血糖    
Abstract:

Diabetes is the third most harmful disease to human health after cancer and cardiovascular disease. Treatment for type 1 or type 2 diabetes requires daily injections or continuous infusion of exogenous insulin to regulate blood sugar in the body to normal levels. However, current insulin treatments are limited by the risk of hypoglycemia. Through the application of a delivery system based on biomaterial carriers, the bioavailability of insulin can be improved while the occurrence of adverse reactions can be reduced.Therefore, the research and development based on an intelligent insulin delivery system is necessary to improve the controllability of insulin administration. This paper reviews different methods of insulin delivery in recent years. The mechanism of an intelligent insulin delivery system was described, and the research status and existing problems of intelligent insulin delivery systems under different drug delivery methods were discussed.

Key words: Diabetes    Insulin    Intelligent insulin delivery system    Blood glucose
收稿日期: 2022-01-15 出版日期: 2022-06-17
ZTFLH:  Q819  
通讯作者: 赵海洋     E-mail: zwu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵冰
麻淳博
孙冰冰
赵海洋

引用本文:

赵冰,麻淳博,孙冰冰,赵海洋. 智能胰岛素递送系统用于糖尿病治疗的研究进展[J]. 中国生物工程杂志, 2022, 42(5): 81-90.

ZHAO Bing,MA Chun-bo,SUN Bing-bing,ZHAO Hai-yang. Research Progress of Intelligent Insulin Delivery System for Diabetes Treatment. China Biotechnology, 2022, 42(5): 81-90.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2112019        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I5/81

图1  不同给药方式使用智能胰岛素递送系统治疗DM示意图
给药途径 优点 缺点 参考文献
口服给药 无创无痛、依从性高、便宜便携 生物利用度低 [12-15]
鼻腔给药 无创无痛、避免首过效应 黏液纤毛清除药物速度快、剂量分布不均匀 [16-17]
经皮给药 给药方便、依从性好 潜在皮肤感染、给药剂量不精确 [25-27]
皮下注射 低成本、高吸收 依从性不足、低血糖风险、注射部位疼痛 [5-9]
静脉注射 快速降低血糖浓度 低血糖风险 [28]
表1  胰岛素不同给药方式的优缺点
图2  胰岛素及其智能递送系统的发展
图3  智能胰岛素递送系统原理示意图
[1] Ma Q, Zhao X, Shi A H, et al. Bioresponsive functional phenylboronic acid-based delivery system as an emerging platform for diabetic therapy. International Journal of Nanomedicine, 2021, 16: 297-314.
doi: 10.2147/IJN.S284357
[2] Schmidt A M. Highlighting diabetes mellitus: the epidemic continues. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38(1): e1-e8.
[3] Umpierrez G, Korytkowski M. Diabetic emergencies:ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nature Reviews Endocrinology, 2016, 12 (4): 222-232.
doi: 10.1038/nrendo.2016.15
[4] Edward J. International Diabetes Federation Diabetes Atlas 10th edition, 2021. [2022-01-11]. https://diabetesatlas.org/atlas/tenth-edition/.
[5] Karimi S, Jaafari A, Ghamari M, et al. A comparison of type II diabetic patients with healthy people: coping strategies, hardiness, and occupational life quality. International Journal of High Risk Behaviors & Addiction, 2016, 5(1): e24169.
[6] Azuma K, Kawamori R, Toyofuku Y, et al. Repetitive fluctuations in blood glucose enhance monocyte adhesion to the endothelium of rat thoracic aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26(10): 2275-2280.
doi: 10.1161/01.ATV.0000239488.05069.03
[7] Kahkoska A R, Buse J B. Primum non nocere: refocusing our attention on severe hypoglycemia prevention. Diabetes Care, 2018, 41(8): 1557-1559.
doi: 10.2337/dci18-0020 pmid: 30030257
[8] Investigators T N S S. Hypoglycemia and risk of death in critically ill patients. New England Journal of Medicine, 2012, 367(12): 1108-1118.
doi: 10.1056/NEJMoa1204942
[9] Sung H W, Sonaje K, Liao Z X, et al. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Accounts of Chemical Research, 2012, 45(4): 619-629.
doi: 10.1021/ar200234q
[10] Zhao L, Huang Q W, Liu Y Y, et al. Boronic acid as glucose-sensitive agent regulates drug delivery for diabetes treatment. Materials (Basel, Switzerland), 2017, 10(2): 170.
[11] Hashemi N, Valk T, Houlind K, et al. Insulin-based infusion system: preliminary study. Journal of Diabetes Science and Technology, 2019, 13(5): 935-940.
doi: 10.1177/1932296818821349 pmid: 30678470
[12] Iyer H, Khedkar A, Verma M. Oral insulin: a review of current status. Diabetes, Obesity and Metabolism, 2010, 12(3): 179-185.
doi: 10.1111/j.1463-1326.2009.01150.x
[13] Owens D R, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabetic Medicine, 2003, 20(11): 886-898.
pmid: 14632713
[14] Wong C Y, Martinez J, Dass C R. Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities. Journal of Pharmacy and Pharmacology, 2016, 68(9): 1093-1108.
doi: 10.1111/jphp.12607
[15] Mitragotri S, Burke P A, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nature Reviews Drug Discovery, 2014, 13 (9): 655-672.
doi: 10.1038/nrd4363 pmid: 25103255
[16] Thwala L N, Préat V, Csaba N S. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opinion on Drug Delivery, 2017, 14(1): 23-36.
doi: 10.1080/17425247.2016.1206074
[17] Chugh Y, Kapoor P, Kapoor A K. Intranasal drug delivery: a novel approach. Indian Journal of Otolaryngology and Head and Neck Surgery, 2009, 61(2): 90-94.
doi: 10.1007/s12070-009-0044-2
[18] Khafagy E S, Morishita M, Onuki Y, et al. Current challenges in non-invasive insulin delivery systems: a comparative review. Advanced Drug Delivery Reviews, 2007, 59(15): 1521-1546.
pmid: 17881081
[19] Antunes E, Cavaco-Paulo A. Stratum corneum lipid matrix with unusual packing: a molecular dynamics study. Colloids and Surfaces B: Biointerfaces, 2020, 190: 110928.
doi: 10.1016/j.colsurfb.2020.110928 pmid: 32179416
[20] Opatha S A T, Titapiwatanakun V, Chutoprapat R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 2020, 12(9): 855.
doi: 10.3390/pharmaceutics12090855
[21] KováČik A, KopeČná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opinion on Drug Delivery, 2020, 17(2): 145-155.
doi: 10.1080/17425247.2020.1713087
[22] Priya B, Rashmi T, Bozena M. Transdermal iontophoresis. Expert Opinion on Drug Delivery, 2006, 3(1): 127-138.
doi: 10.1517/17425247.3.1.127
[23] Ita K. Perspectives on transdermal electroporation. Pharmaceutics, 2016, 8(1): 9.
doi: 10.3390/pharmaceutics8010009
[24] Mitragotri S, Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis. Pharmaceutical Research, 1996, 13(3): 411-420.
pmid: 8692734
[25] Jin X, Zhu D D, Chen B Z, et al. Insulin delivery systems combined with microneedle technology. Advanced Drug Delivery Reviews, 2018, 127: 119-137.
doi: 10.1016/j.addr.2018.03.011
[26] Sivamani R K, Stoeber B, Wu G C, et al. Clinical microneedle injection of methyl nicotinate: stratum corneum penetration. Skin Research and Technology, 2005, 11(2): 152-156.
pmid: 15807814
[27] Kaushik S, Hord A H, Denson D D, et al. Lack of pain associated with microfabricated microneedles. Anesthesia and Analgesia, 2001, 92(2): 502-504.
pmid: 11159258
[28] Gomaa Y A, Morrow D I J, Garland M J, et al. Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicology in Vitro, 2010, 24(7): 1971-1978.
doi: 10.1016/j.tiv.2010.08.012
[29] Brownlee M, Cerami A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science, 1979, 206(4423): 1190-1191.
pmid: 505005
[30] Ishihara K, Kobayashi M, Ishimaru N, et al. Glucose induced permeation control of insulin through a complex membrane consisting of immobilized glucose oxidase and a poly(amine). Polymer Journal, 1984, 16 (8): 625-631.
doi: 10.1295/polymj.16.625
[31] Seminoff L A, Gleeson J M, Zheng J, et al. A self-regulating insulin delivery system. II. in vivo characteristics of a synthetic glycosylated insulin. International Journal of Pharmaceutics, 1989, 54(3): 251-257.
doi: 10.1016/0378-5173(89)90102-6
[32] Shiino D, Murata Y, Kataoka K, et al. Preparation and characterization of a glucose-responsive insulin-releasing polymer device. Biomaterials, 1994, 15(2): 121-128.
pmid: 8011858
[33] Zhao L, Xiao C S, Wang L Y, et al. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chemical Communications (Cambridge, England), 2016, 52(49): 7633-7652.
doi: 10.1039/C6CC02202B
[34] Kost J, Langer R. Responsive polymeric delivery systems. Advanced Drug Delivery Reviews, 2001, 46(1-3): 125-148.
pmid: 11259837
[35] Wu Q, Wang L, Yu H J, et al. Organization of glucose-responsive systems and their properties. Chemical Reviews, 2011, 111(12): 7855-7875.
doi: 10.1021/cr200027j
[36] Shen D, Yu H J, Wang L, et al. Recent progress in design and preparation of glucose-responsive insulin delivery systems. Journal of Controlled Release, 2020, 321: 236-258.
doi: S0168-3659(20)30091-2 pmid: 32061789
[37] Veiseh O, Tang B C, Whitehead K A, et al. Managing diabetes with nanomedicine: challenges and opportunities. Nature Reviews Drug Discovery, 2015, 14 (1): 45-57.
doi: 10.1038/nrd4477 pmid: 25430866
[38] Keilin D, Hartree E F. Properties of glucose oxidase (notatin): Addendum. Sedimentation and diffusion of glucose oxidase (notatin). The Biochemical Journal, 1948, 42(2): 221-229.
[39] Wang J Q, Ye Y Q, Yu J C, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 2018, 12(3): 2466-2473.
doi: 10.1021/acsnano.7b08152
[40] Tanna S, Taylor M J, Sahota T S, et al. Glucose-responsive UV polymerised dextran-concanavalin A acrylic derivatised mixtures for closed-loop insulin delivery. Biomaterials, 2006, 27(8): 1586-1597.
doi: 10.1016/j.biomaterials.2005.08.011
[41] Edelman G M, Cunningham B A, Reeke G N Jr, et al. The covalent and three-dimensional structure of concanavalin A. Proceedings of the National Academy of Sciences of the United States of America, 1972, 69(9): 2580-2584.
[42] Liu F, Song S C, Mix D, et al. Glucose-induced release of glycosylpoly(ethylene glycol) insulin bound to a soluble conjugate of concanavalin A. Bioconjugate Chemistry, 1997, 8(5): 664-672.
pmid: 9327129
[43] VandenBerg M A, Webber M J. Biologically inspired and chemically derived methods for glucose-responsive insulin therapy. Advanced Healthcare Materials, 2019, 8(12): 1801466.
doi: 10.1002/adhm.201801466
[44] Bapat A P, Roy D, Ray J G, et al. Dynamic-covalent macromolecular stars with boronic ester linkages. Journal of the American Chemical Society, 2011, 133(49): 19832-19838.
doi: 10.1021/ja207005z
[45] Springsteen G, Wang B H. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002, 58(26): 5291-5300.
doi: 10.1016/S0040-4020(02)00489-1
[46] Cambre J N, Sumerlin B S. Biomedical applications of boronic acid polymers. Polymer, 2011, 52(21): 4631-4643.
doi: 10.1016/j.polymer.2011.07.057
[47] Ma R J, Shi L Q. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym Chem, 2014, 5(5): 1503-1518.
doi: 10.1039/C3PY01202F
[48] Zeng Z Y, Qi D M, Yang L, et al. Stimuli-responsive self-assembled dendrimers for oral protein delivery. Journal of Controlled Release, 2019, 315: 206-213.
doi: 10.1016/j.jconrel.2019.10.049
[49] Sun L, Zhang X G, Wu Z M, et al. Oral glucose- and pH-sensitive nanocarriers for simulating insulin release in vivo. Polym Chem, 2014, 5(6): 1999-2009.
doi: 10.1039/C3PY01416A
[50] Luo F Q, Chen G J, Xu W, et al. Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery. Nano Research, 2021, 14(8): 2689-2696.
doi: 10.1007/s12274-020-3273-z
[51] Situ W B, Li X X, Liu J, et al. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery. Journal of Agricultural and Food Chemistry, 2015, 63(16): 4138-4147.
doi: 10.1021/acs.jafc.5b00393
[52] Zheng C, Guo Q Q, Wu Z M, et al. Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins. European Journal of Pharmaceutical Sciences, 2013, 49(4): 474-482.
doi: 10.1016/j.ejps.2013.04.027 pmid: 23648782
[53] Wei X S, Duan X Z, Zhang Y F, et al. Internalization mechanism of phenylboronic-acid-decorated nanoplatform for enhanced nasal insulin delivery. ACS Applied Bio Materials, 2020, 3(4): 2132-2139.
doi: 10.1021/acsabm.0c00002
[54] Gill H S, Prausnitz M R. Coated microneedles for transdermal delivery. Journal of Controlled Release, 2007, 117(2): 227-237.
doi: 10.1016/j.jconrel.2006.10.017
[55] Ullah A, Choi H J, Jang M, et al. Smart microneedles with porous polymer layer for glucose-responsive insulin delivery. Pharmaceutics, 2020, 12(7): 606.
doi: 10.3390/pharmaceutics12070606
[56] 张宇琪, 俞计成, 沈群东, 等. 随葡萄糖响应的合成类闭路胰岛素递释系统. 化学进展, 2015, 27(1): 11-26.
doi: 10.7536/PC140942
Zhang Y Q, Yu J C, Shen Q D, et al. Glucose-responsive synthetic closed-loop insulin delivery systems. Progress in Chemistry, 2015, 27(1): 11-26.
doi: 10.7536/PC140942
[57] Chen S Y, Matsumoto H, Moro-oka Y, et al. Microneedle-array patch fabricated with enzyme-free polymeric components capable of on-demand insulin delivery. Advanced Functional Materials, 2019, 29(7): 1807369.
doi: 10.1002/adfm.201807369
[58] Yu J C, Zhang Y Q, Ye Y Q, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. PNAS, 2015, 112(27): 8260-8265.
doi: 10.1073/pnas.1505405112
[59] Xu B, Cao Q Y, Zhang Y, et al. Microneedles integrated with ZnO quantum-dot-capped mesoporous bioactive glasses for glucose-mediated insulin delivery. ACS Biomaterials Science & Engineering, 2018, 4(7): 2473-2483.
[60] Tong Z Z, Zhou J Y, Zhong J X, et al. Glucose- and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Applied Materials & Interfaces, 2018, 10(23): 20014-20024.
[61] Gu Z, Aimetti A A, Wang Q, et al. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano, 2013, 7(5): 4194-4201.
doi: 10.1021/nn400630x
[62] Li X, Fu M, Wu J et al. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater, 2017, 51: 294-303.
doi: 10.1016/j.actbio.2017.01.016
[63] Kim M Y, Kim J. Chitosan microgels embedded with catalase nanozyme-loaded mesocellular silica foam for glucose-responsive drug delivery. ACS Biomaterials Science & Engineering, 2017, 3(4): 572-578.
[64] Hou L, Zheng Y Z, Wang Y C, et al. Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “touch switch” releasing property for insulin delivery. ACS Applied Materials & Interfaces, 2018, 10(26): 21927-21938.
[65] Zhang L, Wang Z Z, Zhang Y, et al. Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy. ACS Nano, 2018, 12(10): 10201-10211.
doi: 10.1021/acsnano.8b05200 pmid: 30265804
[66] Xia D L, He H, Wang Y, et al. Ultrafast glucose-responsive, high loading capacity erythrocyte to self-regulate the release of insulin. Acta Biomaterialia, 2018, 69: 301-312.
doi: 10.1016/j.actbio.2018.01.029
[67] He M Y, Yu P, Hu Y L, et al. Erythrocyte-membrane-enveloped biomineralized metal-organic framework nanoparticles enable intravenous glucose-responsive insulin delivery. ACS Applied Materials & Interfaces, 2021, 13(17): 19648-19659.
[1] 甘巧, 孟庆雄. 肠道菌群及其代谢产物与T2DM发病机制及干预措施*[J]. 中国生物工程杂志, 2022, 42(3): 62-71.
[2] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[3] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[4] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[5] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[6] 陈英,肖海鹏,张晓焰,龚庆伟,马利,李文佳,陈小锋. GLP-1-IgG4-Fc融合蛋白的表达与鉴定 *[J]. 中国生物工程杂志, 2018, 38(7): 58-66.
[7] 冯琳晶,于洋,杜红伟. FoxO1在胰岛β细胞代谢灵活性受损及失代偿进程中的作用 *[J]. 中国生物工程杂志, 2018, 38(6): 70-76.
[8] 党诗莹,马义,文涛,肖兴,洪岸. 纳米复合肽SCM的制备及其对II型糖尿病治疗作用的研究 *[J]. 中国生物工程杂志, 2018, 38(5): 17-23.
[9] 颜秋霞,马义,洪岸. PACAP及其衍生物治疗糖尿病及其并发症的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 62-68.
[10] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.
[11] 李艳伟, 马义, 韩磊, 肖兴, 党诗莹, 文涛, 王得华, 范志勇. Fas凋亡抑制分子FAIM 1表达缺失诱发单纯性肥胖的初步研究[J]. 中国生物工程杂志, 2017, 37(6): 37-42.
[12] 王得华, 马义, 韩磊, 肖兴, 李艳伟, 党诗莹, 范志勇, 文涛, 洪岸. 新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究[J]. 中国生物工程杂志, 2017, 37(5): 59-65.
[13] 张晶晶, 刘克东, 钱凯, 缪亚娜, 蔡燕飞, 李成媛, 陈蕴, 金坚. 稳定表达GLP-1类似物的CHO细胞株的构建及培养工艺研究[J]. 中国生物工程杂志, 2017, 37(5): 52-58.
[14] 高相雷, 林树珊, 龚庆伟, 潘兰, 马利, 冯艳, 林小鹊, 曾剑, 李文佳, 陈小锋, 陈英. 重组人胰高血糖素样肽-1类似物的分离纯化和鉴定[J]. 中国生物工程杂志, 2016, 36(12): 15-20.
[15] 马义, 罗天杰, 洪岸. 新型重组VPAC2激动剂RD的制备及促进胰岛素功能的分子机制[J]. 中国生物工程杂志, 2014, 34(11): 60-66.