Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (6): 66-75    DOI: 10.13523/j.cb.2201016
综述     
单克隆抗体生产过程中二硫键还原成因及预防方法
张莘迪1,范长伟,宋晓清2,徐翠云,黄凤杰2,*()
1.中国药科大学生命科学与技术学院 南京 211198
2.上海复宏汉霖生物技术股份有限公司 上海 200233
Root Cause and Prevention of Monoclonal Antibody Disulfide Bonds Reduction During Biopharmaceutical Manufacturing Process
ZHANG Xin-di1,FAN Chang-wei2,SONG Xiao-qing2,*(),XU Cui-yun2,HUANG Feng-jie1
1. College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
2. Shanghai Henlius Biotech, Inc., Shanghai 200233, China
 全文: PDF(1593 KB)   HTML
摘要:

单克隆抗体生产过程中二硫键的还原是生物制药领域中的一个常见技术难题,可产生低分子量碎片,影响产品质量,导致蛋白纯度降低、稳定性下降,影响药物的安全性和有效性。抗体二硫键还原实质上是由细胞内的硫氧还蛋白系统和谷胱甘肽系统引起的可逆氧化还原反应,并与具体生产过程参数有关。近年来,随着抗体药物和哺乳动物细胞培养工艺规模的发展,二硫键还原问题频繁发生。为解决此问题,研究人员不断尝试并建立了多种预防方法以保证产品质量。概述了抗体二硫键结构、二硫键还原的主要成因及生产过程中的形成因素,重点阐述了消除或减缓抗体二硫键还原的方法、对策,并列举了几种可行的过程分析技术,以期为单克隆抗体药物生产制造工艺的进一步优化提供参考。

关键词: 抗体二硫键氧化还原工艺开发过程分析技术    
Abstract:

Monoclonal antibody disulfide bonds reduction has been a common issue in biopharmaceutical process, which could produce low-molecular weight fragments, affect product quality, and lead to decreased protein purity and stability. Moreover, it could also affect the safety and effectiveness of drugs. Antibody disulfide bonds reduction is a reversible redox reaction caused by intracellular thioredoxin system and glutathione system, and is related to the specific production process. In recent years, with the development of antibody drugs and mammalian cell culture scale, disulfide bonds reduction is observed more frequently. To solve this problem, scientists have been constantly developing mitigation strategies to ensure the product quality. In this paper, the antibody disulfide bonds structure, cause of disulfide bonds reduction and influencing factors in manufacturing process were summarized. It is focused on the prevention methods in the manufacturing process. Additionally, several feasible process analysis techniques are listed so as to provide reference for the further development of monoclonal antibody drugs in manufacturing.

Key words: Antibody    Disulfide bond    Oxidation and reduction    Process development    Process analytical technology
收稿日期: 2022-01-14 出版日期: 2022-07-07
ZTFLH:  Q819  
通讯作者: 黄凤杰     E-mail: hfj@cpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张莘迪
范长伟
宋晓清
徐翠云
黄凤杰

引用本文:

张莘迪,范长伟,宋晓清,徐翠云,黄凤杰. 单克隆抗体生产过程中二硫键还原成因及预防方法[J]. 中国生物工程杂志, 2022, 42(6): 66-75.

ZHANG Xin-di,FAN Chang-wei,SONG Xiao-qing,XU Cui-yun,HUANG Feng-jie. Root Cause and Prevention of Monoclonal Antibody Disulfide Bonds Reduction During Biopharmaceutical Manufacturing Process. China Biotechnology, 2022, 42(6): 66-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2201016        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I6/66

图1  抗体二硫键结构及还原后的形式
图2  硫氧还蛋白系统和谷胱甘肽系统还原抗体二硫键机制
方法 原理 操作步骤 参考文献
敲除TXN1基因 抑制酶表达 细胞株开发阶段 [43]
添加酶抑制剂(ATG、ATM、Cu2+、EDTA、L型胱氨酸等) 抑制酶活性 培养&收获阶段 [18,33,37,44-45]
降低pH 降低酶反应速率 培养&收获阶段 [37,40]
低温储存 降低酶反应速率 收获阶段 [6]
提高DO设定点 使可逆的氧化还原
反应转为氧化方向
培养阶段 [47]
向储存容器通入空气、添加H2O2 使可逆的氧化还原
反应转为氧化方向
收获阶段 [28,38]
使用密封式离心机、控制深层过滤压差 减少酶的数量 收获阶段 [38,50]
缩短储存时间 缩短酶反应时间 收获阶段 [6]
Protein A亲和层析用氧化还原缓冲液洗涤 将已经还原的抗体重新氧化 纯化阶段 [52-53]
表1  生产过程中抗体二硫键还原的防治方法
[1] Kaplon H, Reichert J M. Antibodies to watch in 2021. MAbs, 2021, 13(1): 1860476.
doi: 10.1080/19420862.2020.1860476
[2] Goydel R S, Rader C. Antibody-based cancer therapy. Oncogene, 2021, 40(21): 3655-3664.
doi: 10.1038/s41388-021-01811-8
[3] Mullard A. FDA approves 100th monoclonal antibody product. Nature Reviews Drug Discovery, 2021, 20(7): 491-495.
doi: 10.1038/d41573-021-00079-7 pmid: 33953368
[4] Carrara S C, Ulitzka M, Grzeschik J, et al. From cell line development to the formulated drug product: the art of manufacturing therapeutic monoclonal antibodies. International Journal of Pharmaceutics, 2021, 594: 120164.
doi: 10.1016/j.ijpharm.2020.120164
[5] Lakbub J C, Shipman J T, Desaire H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Analytical and Bioanalytical Chemistry, 2018, 410(10): 2467-2484.
doi: 10.1007/s00216-017-0772-1 pmid: 29256076
[6] Ren T W, Tan Z J, Ehamparanathan V, et al. Antibody disulfide bond reduction and recovery during biopharmaceutical process development- a review. Biotechnology and Bioengineering, 2021, 118(8): 2829-2844.
doi: 10.1002/bit.27790
[7] Wang W, Singh S, Zeng D L, et al. Antibody structure, instability, and formulation. Journal of Pharmaceutical Sciences, 2007, 96(1): 1-26.
pmid: 16998873
[8] Liu H C, May K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs, 2012, 4(1): 17-23.
doi: 10.4161/mabs.4.1.18347
[9] Wang X L, Kumar S, Singh S K. Disulfide scrambling in IgG2 monoclonal antibodies: insights from molecular dynamics simulations. Pharmaceutical Research, 2011, 28(12): 3128-3144.
doi: 10.1007/s11095-011-0503-9
[10] Moritz B, Stracke J O. Assessment of disulfide and hinge modifications in monoclonal antibodies. Electrophoresis, 2017, 38(6): 769-785.
doi: 10.1002/elps.201600425 pmid: 27982442
[11] Hutterer K M, Hong R W, Lull J, et al. Monoclonal antibody disulfide reduction during manufacturing: Untangling process effects from product effects. MAbs, 2013, 5(4): 608-613.
doi: 10.4161/mabs.24725
[12] Wang T, Liu Y D, Cai B, et al. Investigation of antibody disulfide reduction and re-oxidation and impact to biological activities. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102: 519-528.
doi: 10.1016/j.jpba.2014.10.023
[13] Dionne B, Mishra N, Butler M. A low redox potential affects monoclonal antibody assembly and glycosylation in cell culture. Journal of Biotechnology, 2017, 246: 71-80.
doi: 10.1016/j.jbiotec.2017.01.016
[14] Manteca A, Alonso-Caballero Á, Fertin M, et al. The influence of disulfide bonds on the mechanical stability of proteins is context dependent. Journal of Biological Chemistry, 2017, 292(32): 13374-13380.
doi: 10.1074/jbc.M117.784934 pmid: 28642368
[15] Sakurai K, Nakahata R, Lee Y H, et al. Effects of a reduced disulfide bond on aggregation properties of the human IgG1 CH3 domain. Biochimica et Biophysica Acta, 2015, 1854(10): 1526-1535.
[16] Derfus G E, Dizon-Maspat J, Broddrick J T, et al. Red colored IgG 4 caused by vitamin B12 from cell culture media combined with disulfide reduction at harvest. MAbs, 2014, 6(3): 679-688.
doi: 10.4161/mabs.28257 pmid: 24552690
[17] Du C, Martin R, Huang Y P, et al. Vitamin B12 association with mAbs: mechanism and potential mitigation strategies. Biotechnology and Bioengineering, 2018, 115(4): 900-909.
doi: 10.1002/bit.26511
[18] Chung W K, Russell B, Yang Y H, et al. Effects of antibody disulfide bond reduction on purification process performance and final drug substance stability. Biotechnology and Bioengineering, 2017, 114(6): 1264-1274.
doi: 10.1002/bit.26265 pmid: 28186329
[19] Gurjar S A, Wheeler J X, Wadhwa M, et al. The impact of thioredoxin reduction of allosteric disulfide bonds on the therapeutic potential of monoclonal antibodies. Journal of Biological Chemistry, 2019, 294(51): 19616-19634.
doi: 10.1074/jbc.RA119.010637
[20] Li F, Vijayasankaran N, Shen A, et al. Cell culture processes for monoclonal antibody production. MAbs, 2010, 2(5): 466-479.
doi: 10.4161/mabs.2.5.12720
[21] Cherkaoui S, Bettinger T, Hauwel M, et al. Tracking of antibody reduction fragments by capillary gel electrophoresis during the coupling to microparticles surface. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53(2): 172-178.
doi: 10.1016/j.jpba.2010.01.039 pmid: 20193997
[22] Dada O O, Rao R, Jones N, et al. Comparison of SEC and CE-SDS methods for monitoring hinge fragmentation in IgG1 monoclonal antibodies. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145: 91-97.
doi: 10.1016/j.jpba.2017.06.006
[23] Guan X Y, Zhang L, Wypych J. Direct mass spectrometric characterization of disulfide linkages. MAbs, 2018, 10(4): 572-582.
doi: 10.1080/19420862.2018.1442998
[24] Deslignière E, Botzanowski T, Diemer H, et al. High-resolution IMS-MS to assign additional disulfide bridge pairing in complementarity-determining regions of an IgG 4 monoclonal antibody. Journal of the American Society for Mass Spectrometry, 2021, 32(10): 2505-2512.
doi: 10.1021/jasms.1c00151 pmid: 34437803
[25] Liu H C, Gaza-Bulseco G, Chumsae C. Analysis of reduced monoclonal antibodies using size exclusion chromatography coupled with mass spectrometry. Journal of the American Society for Mass Spectrometry, 2009, 20(12): 2258-2264.
doi: 10.1016/j.jasms.2009.08.015
[26] Mullan B, Dravis B, Lim A, et al. Disulphide bond reduction of a therapeutic monoclonal antibody during cell culture manufacturing operations. BMC Proceedings, 2011, 5(Suppl 8): P110.
[27] Trivedi M V, Laurence J S, Siahaan T J. The role of thiols and disulfides on protein stability. Current Protein & Peptide Science, 2009, 10(6): 614-625.
[28] Du C, Huang Y P, Borwankar A, et al. Using hydrogen peroxide to prevent antibody disulfide bond reduction during manufacturing process. MAbs, 2018, 10(3): 500-510.
doi: 10.1080/19420862.2018.1424609
[29] Park S Y, Egan S, Cura A J, et al. Untargeted proteomics reveals upregulation of stress response pathways during CHO-based monoclonal antibody manufacturing process leading to disulfide bond reduction. MAbs, 2021, 13(1): 1963094.
doi: 10.1080/19420862.2021.1963094
[30] Xie W L, Ma W J, Liu P, et al. Overview of thioredoxin system and targeted therapies for acute leukemia. Mitochondrion, 2019, 47: 38-46.
doi: 10.1016/j.mito.2019.04.010
[31] Lillig C H, Berndt C, Holmgren A. Glutaredoxin systems. Biochimica et Biophysica Acta (BBA) - General Subjects, 2008, 1780(11): 1304-1317.
doi: 10.1016/j.bbagen.2008.06.003
[32] Handlogten M W, Zhu M, Ahuja S. Glutathione and thioredoxin systems contribute to recombinant monoclonal antibody interchain disulfide bond reduction during bioprocessing. Biotechnology and Bioengineering, 2017, 114(7): 1469-1477.
doi: 10.1002/bit.26278 pmid: 28262915
[33] Kao Y H, Hewitt D P, Trexler-Schmidt M, et al. Mechanism of antibody reduction in cell culture production processes. Biotechnology and Bioengineering, 2010, 107(4): 622-632.
doi: 10.1002/bit.22848
[34] Cura A J, Xu X K, Egan S, et al. Metabolic understanding of disulfide reduction during monoclonal antibody production. Applied Microbiology and Biotechnology, 2020, 104(22): 9655-9669.
doi: 10.1007/s00253-020-10916-1
[35] Chakrabarti S, Barrow C J, Kanwar R K, et al. Studies to prevent degradation of recombinant fc-fusion protein expressed in mammalian cell line and protein characterization. International Journal of Molecular Sciences, 2016, 17(6): 913.
doi: 10.3390/ijms17060913
[36] Li F, Hashimura Y, Pendleton R, et al. A systematic approach for scale-down model development and characterization of commercial cell culture processes. Biotechnology Progress, 2006, 22(3): 696-703.
doi: 10.1021/bp0504041
[37] Trexler-Schmidt M, Sargis S, Chiu J, et al. Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing. Biotechnology and Bioengineering, 2010, 106(3): 452-461.
doi: 10.1002/bit.22699 pmid: 20178122
[38] O’Mara B, Gao Z H, Kuruganti M, et al. Impact of depth filtration on disulfide bond reduction during downstream processing of monoclonal antibodies from CHO cell cultures. Biotechnology and Bioengineering, 2019, 116(7): 1669-1683.
doi: 10.1002/bit.26964
[39] Handlogten M W, Zhu M, Ahuja S. Intracellular response of CHO cells to oxidative stress and its influence on metabolism and antibody production. Biochemical Engineering Journal, 2018, 133: 12-20.
doi: 10.1016/j.bej.2018.01.031
[40] Xie P P, Niu H J, Chen X N, et al. Elucidating the effects of pH shift on IgG 1 monoclonal antibody acidic charge variant levels in Chinese hamster ovary cell cultures. Applied Microbiology and Biotechnology, 2016, 100(24): 10343-10353.
doi: 10.1007/s00253-016-7749-4
[41] Le Basle Y, Chennell P, Tokhadze N, et al. Physicochemical stability of monoclonal antibodies: a review. Journal of Pharmaceutical Sciences, 2020, 109(1): 169-190.
doi: 10.1016/j.xphs.2019.08.009
[42] Liu H C, Nowak C, Shao M, et al. Impact of cell culture on recombinant monoclonal antibody product heterogeneity. Biotechnology Progress, 2016, 32(5): 1103-1112.
doi: 10.1002/btpr.2327
[43] Koterba K L, Borgschulte T, Laird M W. Thioredoxin 1 is responsible for antibody disulfide reduction in CHO cell culture. Journal of Biotechnology, 2012, 157(1): 261-267.
doi: 10.1016/j.jbiotec.2011.11.009
[44] Brühlmann D, Jordan M, Hemberger J, et al. Tailoring recombinant protein quality by rational media design. Biotechnology Progress, 2015, 31(3): 615-629.
doi: 10.1002/btpr.2089 pmid: 25864704
[45] Chaderjian W B, Chin E T, Harris R J, et al. Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed. Biotechnology Progress, 2005, 21(2): 550-553.
pmid: 15801797
[46] Franey H, Brych S R, Kolvenbach C G, et al. Increased aggregation propensity of IgG 2 subclass over IgG1: role of conformational changes and covalent character in isolated aggregates. Protein Science, 2010, 19(9): 1601-1615.
doi: 10.1002/pro.434
[47] Handlogten M W, Wang J H, Ahuja S. Online control of cell culture redox potential prevents antibody interchain disulfide bond reduction. Biotechnology and Bioengineering, 2020, 117(5): 1329-1336.
doi: 10.1002/bit.27281 pmid: 31956991
[48] Ishikawa T, Ito T, Endo R, et al. Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies. Biological & Pharmaceutical Bulletin, 2010, 33(8): 1413-1417.
[49] Zhang W J, Liu X P, Tang H P, et al. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Applied Microbiology and Biotechnology, 2020, 104(16): 6953-6966.
doi: 10.1007/s00253-020-10744-3
[50] Hutchinson N, Bingham N, Murrell N, et al. Shear stress analysis of mammalian cell suspensions for prediction of industrial centrifugation and its verification. Biotechnology and Bioengineering, 2006, 95(3): 483-491.
pmid: 16767778
[51] Mamathambika B S, Bardwell J C. Disulfide-linked protein folding pathways. Annual Review of Cell and Developmental Biology, 2008, 24: 211-235.
doi: 10.1146/annurev.cellbio.24.110707.175333 pmid: 18588487
[52] Tang P F, Tan Z J, Ehamparanathan V, et al. Optimization and kinetic modeling of interchain disulfide bond reoxidation of monoclonal antibodies in bioprocesses. MAbs, 2020, 12(1): 1829336.
doi: 10.1080/19420862.2020.1829336
[53] Tan Z J, Ehamparanathan V, Ren T W, et al. On-column disulfide bond formation of monoclonal antibodies during protein A chromatography eliminates low molecular weight species and rescues reduced antibodies. MAbs, 2020, 12(1): 1829333.
doi: 10.1080/19420862.2020.1829333
[54] Wasalathanthri D P, Shah R, Ding J L, et al. Process analytics 4.0: a paradigm shift in rapid analytics for biologics development. Biotechnology Progress, 2021, 37(4): e3177.
doi: 10.1002/btpr.3177 pmid: 34036755
[55] Wasalathanthri D P, Rehmann M S, Song Y L, et al. Technology outlook for real-time quality attribute and process parameter monitoring in biopharmaceutical development-a review. Biotechnology and Bioengineering, 2020, 117(10): 3182-3198.
doi: 10.1002/bit.27461 pmid: 32946122
[56] Chemmalil L, Prabhakar T, Kuang J E, et al. Online/at-line measurement, analysis and control of product titer and critical product quality attributes (CQAs) during process development. Biotechnology and Bioengineering, 2020, 117(12): 3757-3765.
doi: 10.1002/bit.27531
[57] Sinharoy P, McFarland K S, Majewska N I, et al. Redox as a bioprocess parameter: analytical redox quantification in biological therapeutic production. Current Opinion in Biotechnology, 2021, 71: 49-54.
doi: 10.1016/j.copbio.2021.06.017 pmid: 34243034
[58] Meneses-Acosta A, Gómez A, Ramírez O T. Control of redox potential in hybridoma cultures: effects on MAb production, metabolism, and apoptosis. Journal of Industrial Microbiology and Biotechnology, 2012, 39(8): 1189-1198.
doi: 10.1007/s10295-012-1125-x pmid: 22526329
[59] Switzar L, Nicolardi S, Rutten J W, et al. In-depth characterization of protein disulfide bonds by online liquid chromatography-electrochemistry-mass spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27(1): 50-58.
doi: 10.1007/s13361-015-1258-z pmid: 26369777
[60] Wu S L, Jiang H T, Lu Q Z, et al. Mass spectrometric determination of disulfide linkages in recombinant therapeutic proteins using online LC-MS with electron-transfer dissociation. Analytical Chemistry, 2009, 81(1): 112-122.
doi: 10.1021/ac801560k
[61] Abu-Absi N R, Kenty B M, Cuellar M E, et al. Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnology and Bioengineering, 2011, 108(5): 1215-1221.
doi: 10.1002/bit.23023
[62] Matthews T E, Berry B N, Smelko J, et al. Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production. Biotechnology and Bioengineering, 2016, 113(11): 2416-2424.
doi: 10.1002/bit.26018 pmid: 27215441
[63] Liu Z M, Zhang Z J, Qin Y J, et al. The application of Raman spectroscopy for monitoring product quality attributes in perfusion cell culture. Biochemical Engineering Journal, 2021, 173: 108064.
doi: 10.1016/j.bej.2021.108064
[1] 汪琨,赵福运,徐云飞,袁小凤,赵伟春. 茄病镰刀菌单克隆抗体的制备及胶体金免疫层析试纸条的研发*[J]. 中国生物工程杂志, 2022, 42(7): 54-61.
[2] 鲍奕恺,洪皓飞,施杰,周志昉,吴志猛. 靶向PSMA多价纳米抗体的制备及其生物学活性表征*[J]. 中国生物工程杂志, 2022, 42(5): 37-45.
[3] 梁世玉,万里,郭潇佳,王雪颖,吕力婷,胡英菡,赵宗保. 构建可合成非天然辅酶的圆红冬孢酵母工程菌*[J]. 中国生物工程杂志, 2022, 42(5): 58-68.
[4] 曾弘烨,宁文静,罗文新. ADC药物的抗体组成及其作用靶点研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 69-80.
[5] 陈阳, 刘彤, 张佳琦, 廖化新, 林跃智, 王晓钧, 王亚玉. 基于单个B细胞抗体基因扩增技术筛选马IgG1单克隆抗体*[J]. 中国生物工程杂志, 2022, 42(4): 17-23.
[6] 李开通, 刘金青, 蔡望伟, 肖曼, 沈倍奋, 王晶, 冯健男. 靶向人白介素-6蛋白的治疗性单克隆抗体研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 58-67.
[7] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[8] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[9] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[10] 陈文洁,苗先锋. 抗体偶联药物国内研发现状及企业布局分析[J]. 中国生物工程杂志, 2021, 41(6): 105-110.
[11] 许叶春,柳红,李剑峰,沈敬山,蒋华良. 抗新冠肺炎药物研究进展[J]. 中国生物工程杂志, 2021, 41(6): 111-118.
[12] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[13] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[14] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[15] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.