Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (5): 100-105    DOI: 10.13523/j.cb.2111043
综述     
细菌外膜囊泡在抗肿瘤治疗方面的研究进展*
毛露珈1,史恩宇1,王瀚平1,单天贺2,王银松2,王悦1,**()
1 天津医科大学口腔医院 天津 300070
2 天津市临床药物关键技术重点实验室&天津医科大学药学院 天津 300070
Research Progress of Bacterial Outer Membrane Vesicles in Anti-tumor Therapy
MAO Lu-jia1,SHI En-yu1,WANG Han-ping1,SHAN Tian-he2,WANG Yin-song2,WANG Yue1,**()
1 Stomatological Hospital, Tianjin Medical University, Tianjin 300070, China
2 Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Therasnostics) & School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
 全文: PDF(420 KB)   HTML
摘要:

细菌外膜囊泡(outer membrane vesicles,OMVs)是在细菌生长过程中分泌出的一种直径为20~300 nm的膜性小泡。由磷脂、脂多糖、蛋白质、RNA或DNA等组成。OMVs包含大量细菌抗原,通过启动信号转导通路增强细胞因子和共刺激分子的表达,促进抗原呈递,有效激活免疫系统。OMVs中的毒力因子可以传递给宿主细胞,刺激细菌-宿主细胞之间的相互作用,具有内在的抗肿瘤活性。另外OMVs有利于进行工程设计,还可作为高效的药物运载体,实现免疫治疗和化疗-光疗的结合,从而提高药物的抗癌能力。OMVs在肿瘤免疫、肿瘤工程疫苗和载药等方面具有良好前景,被认为是抗肿瘤治疗的新型手段。从OMVs的结构组分、产生机制和抗肿瘤机制等方面概述了OMVs在肿瘤治疗中的研究进展,为将来OMVs的深入研究和临床应用提供参考。

关键词: 细菌外膜囊泡肿瘤治疗肿瘤免疫药物载体    
Abstract:

Outer membrane vesicles (OMVs) are membrane vesicles with a diameter of 20-300 nm secreted during bacterial growth. They are composed of phospholipids, lipopolysaccharides, proteins, RNA or DNA and so on. OMVs contain a large number of bacterial antigens, which enhance the expression of cytokines and costimulatory molecules by initiating signal transduction pathways, promote antigen presentation and effectively activate the immune system. The virulence factors encapsulated in OMVs can be transmitted to host cells, stimulate the interaction between bacteria and host cells, and have inherent anti-tumor activity. OMVs are conducive to engineering design, and also can be used as an efficient drug delivery carrier to achieve the combination of immunotherapy and chemotherapy-phototherapy, so as to improve the anticancer ability of drugs. They have a good prospect in tumor immunity, tumor engineering vaccine and drug loading, and are considered to be a new means of anti-tumor therapy. This paper summarizes the research progress of bacterial outer membrane vesicles in tumor therapy from the aspects of structure and components, formation mechanism and anti-tumor mechanism, so as to provide reference for the further study and clinical application of bacterial outer membrane vesicles in the future.

Key words: Bacterial outer membrane vesicles    Tumor therapy    Tumor immunity    Drug carriers
收稿日期: 2021-11-20 出版日期: 2022-06-17
ZTFLH:  Q819  
基金资助: *国家自然科学基金(81972903)
通讯作者: 王悦     E-mail: wangyue1@tmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
毛露珈
史恩宇
王瀚平
单天贺
王银松
王悦

引用本文:

毛露珈,史恩宇,王瀚平,单天贺,王银松,王悦. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 100-105.

MAO Lu-jia,SHI En-yu,WANG Han-ping,SHAN Tian-he,WANG Yin-song,WANG Yue. Research Progress of Bacterial Outer Membrane Vesicles in Anti-tumor Therapy. China Biotechnology, 2022, 42(5): 100-105.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2111043        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I5/100

[1] Kim J H, Lee J, Park J, et al. Gram-negative and gram-positive bacterial extracellular vesicles. Seminars in Cell & Developmental Biology, 2015, 40: 97-104.
[2] 刘畅, 李桂玲. 细菌外膜囊泡的研究及其在医药生物技术领域的应用进展. 中国医药生物技术, 2018, 13(5): 452-457.
Liu C, Li G L. Research progress on bacterial outer membrane vesicles and applications thereof in the field of medical biotechnology. Chinese Medicinal Biotechnology, 2018, 13(5): 452-457.
[3] Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology, 2019, 17 (1): 13-24.
doi: 10.1038/s41579-018-0112-2
[4] Gerritzen M J H, Martens D E, Wijffels R H, et al. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnology Advances, 2017, 35(5): 565-574.
doi: S0734-9750(17)30055-1 pmid: 28522212
[5] Jan A T. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Frontiers in Microbiology, 2017, 8: 1053.
doi: 10.3389/fmicb.2017.01053
[6] Silhavy T J, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2010, 2(5): a000414.
[7] Samsudin F, Ortiz-Suarez M L, Piggot T J, et al. OmpA: a flexible clamp for bacterial cell wall attachment. Structure, 2016, 24(12): 2227-2235.
doi: S0969-2126(16)30317-3 pmid: 27866852
[8] Szczepaniak J, Press C, Kleanthous C. The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiology Reviews, 2020, 44(4): 490-506.
[9] Schwechheimer C, Kuehn M J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology, 2015, 13 (10): 605-619.
doi: 10.1038/nrmicro3525 pmid: 26373371
[10] Florez C, Raab J E, Cooke A C, et al. Membrane distribution of the Pseudomonas quinolone signal modulates outer membrane vesicle production in Pseudomonas aeruginosa. mBio, 2017, 8(4): e01034-e01017.
[11] Reidl J. Outer membrane vesicle biosynthesis in Salmonella: is there more to gram-negative bacteria? mBio, 2016, 7(4): e01282-e01216.
[12] Siegel R L, Miller K D, Fuchs H E, et al. Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 2021, 71(1): 7-33.
doi: 10.3322/caac.21654
[13] 邢续扬, 王孝春, 何伟. 肿瘤免疫治疗及其药物研发进展. 中国药科大学学报, 2021, 52(1): 10-19.
Xing X Y, Wang X C, He W. Advances in research on tumor immunotherapy and its drug development. Journal of China Pharmaceutical University, 2021, 52(1): 10-19.
[14] Elmore L W, Greer S F, Daniels E C, et al. Blueprint for cancer research: critical gaps and opportunities. CA: A Cancer Journal for Clinicians, 2021, 71(2): 107-139.
doi: 10.3322/caac.21652 pmid: 33326126
[15] Kaparakis-Liaskos M, Ferrero R L. Immune modulation by bacterial outer membrane vesicles. Nature Reviews Immunology, 2015, 15 (6): 375-387.
doi: 10.1038/nri3837 pmid: 25976515
[16] Sanmamed M F, Chen L P. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell, 2018, 175(2): 313-326.
doi: S0092-8674(18)31247-9 pmid: 30290139
[17] Zhang Y X, Fang Z Y, Li R Z, et al. Design of outer membrane vesicles as cancer vaccines: a new toolkit for cancer therapy. Cancers, 2019, 11(9): 1314.
doi: 10.3390/cancers11091314
[18] 钱颖, 钱晨, 白晓庆, 等. 免疫佐剂在肿瘤免疫疗法中的应用进展. 中国生物工程杂志, 2020, 40(3): 96-103.
Qian Y, Qian C, Bai X Q, et al. Application of adjuvant in cancer immunotherapy. China Biotechnology, 2020, 40(3): 96-103.
[19] 盛康亮, 张玲玲, 魏伟. 树突状细胞参与免疫调节的相关受体及其介导的信号转导通路研究进展. 细胞与分子免疫学杂志, 2013, 29(9): 997-1000.
Sheng K L, Zhang L L, Wei W. Research progress on related receptors of dendritic cells involved in immune regulation and their signal transduction pathways. Chinese Journal of Cellular and Molecular Immunology, 2013, 29(9): 997-1000.
[20] Demento S L, Siefert A L, Bandyopadhyay A, et al. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends in Biotechnology, 2011, 29(6): 294-306.
doi: 10.1016/j.tibtech.2011.02.004 pmid: 21459467
[21] 常晓彤, 辇晓峰, 王振辉. Toll样受体信号转导途径研究进展. 生理科学进展, 2011, 42(5): 340-346.
Chang X T, Nian X F, Wang Z H. Progress of research on TLRs-mediated signaling pathway. Progress in Physiological Sciences, 2011, 42(5): 340-346.
[22] Qing S, Lyu C L, Zhu L, et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Advanced Materials, 2020, 32(47): 2002085.
doi: 10.1002/adma.202002085
[23] 张婷婷, 仲金秋, 曹玉珠, 等. 干扰素抗肿瘤机制及其治疗肿瘤的研究进展. 中国药理学通报, 2017, 33(9): 1195-1199.
Zhang T T, Zhong J Q, Cao Y Z, et al. Research progress of interferons in cancer treatment and its mechanism. Chinese Pharmacological Bulletin, 2017, 33(9): 1195-1199.
[24] Kim O Y, Park H T, Dinh N T H, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nature Communications, 2017, 8: 626.
doi: 10.1038/s41467-017-00729-8
[25] Zhou J R, Kroll A V, Holay M, et al. Biomimetic nanotechnology toward personalized vaccines. Advanced Materials, 2020, 32(13): 1901255.
doi: 10.1002/adma.201901255
[26] Kuipers K, Daleke-Schermerhorn M H, Jong W S P, et al. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine, 2015, 33(17): 2022-2029.
doi: 10.1016/j.vaccine.2015.03.010
[27] Schetters S T T, Jong W S P, Horrevorts S K, et al. Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8+ T cells. Acta Biomaterialia, 2019, 91: 248-257.
doi: S1742-7061(19)30276-4 pmid: 31003032
[28] Deo P, Chow S H, Han M L, et al. Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation. Nature Microbiology, 2020, 5 (11): 1418-1427.
doi: 10.1038/s41564-020-0773-2
[29] Ding L, Lin X, Lin Z G, et al. Cancer cell-targeted photosensitizer and therapeutic protein co-delivery nanoplatform based on a metal-organic framework for enhanced synergistic photodynamic and protein therapy. ACS Applied Materials & Interfaces, 2020, 12(33): 36906-36916.
[30] Wai S N, Lindmark B, Söderblom T, et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell, 2003, 115(1): 25-35.
doi: 10.1016/S0092-8674(03)00754-2
[31] Jiang S N, Park S H, Lee H J, et al. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Molecular Therapy, 2013, 21(11): 1985-1995.
doi: 10.1038/mt.2013.183
[32] Tan W Z, Duong M T Q, Zuo C H, et al. Targeting of pancreatic cancer cells and stromal cells using engineered oncolytic Salmonella typhimurium. Molecular Therapy, 2022, 30(2): 662-671.
doi: 10.1016/j.ymthe.2021.08.023
[33] Thomas S C, Madaan T, Kamble N S, et al. Engineered bacteria enhance immunotherapy and targeted therapy through stromal remodeling of tumors. Advanced Healthcare Materials, 2022, 11(2): 2101487.
doi: 10.1002/adhm.202101487
[34] Zhuang Q, Xu J, Deng D S, et al. Bacteria-derived membrane vesicles to advance targeted photothermal tumor ablation. Biomaterials, 2021, 268: 120550.
doi: 10.1016/j.biomaterials.2020.120550
[35] Li M, Zhou H, Jiang W, et al. Nanovaccines integrating endogenous antigens and pathogenic adjuvants elicit potent antitumor immunity. Nano Today, 2020, 35: 101007.
doi: 10.1016/j.nantod.2020.101007
[36] Li Y, Zhao R, Cheng K, et al. Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition. ACS Nano, 2020, 14 (12): 16698-16711. DOI: 10.1021/acsnano.0c03776.
doi: 10.1021/acsnano.0c03776
[37] Cheng K, Zhao R, Li Y, et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nature Communications, 2021, 12: 2041.
doi: 10.1038/s41467-021-22308-8
[38] Huang W W, Zhang Q S, Li W R, et al. Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism. Journal of Controlled Release, 2020, 317: 1-22.
doi: 10.1016/j.jconrel.2019.11.017
[39] Kuerban K, Gao X W, Zhang H, et al. Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer. Acta Pharmaceutica Sinica B, 2020, 10(8): 1534-1548.
doi: 10.1016/j.apsb.2020.02.002
[40] Guo Q, Li X, Zhou W, et al. Sequentially triggered bacterial outer membrane vesicles for macrophage metabolism modulation and tumor metastasis suppression. ACS Nano, 2021, 15 (8):13826-13838. DOI: 10.1021/acsnano.1c05613.
doi: 10.1021/acsnano.1c05613
[41] Li M, Li S, Zhou H, et al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nature Communications, 2020, 11: 1126.
doi: 10.1038/s41467-020-14963-0
[42] Wang D D, Liu C H, You S Q, et al. Bacterial vesicle-cancer cell hybrid membrane-coated nanoparticles for tumor specific immune activation and photothermal therapy. ACS Applied Materials & Interfaces, 2020, 12(37): 41138-41147.
[43] Chen Q, Bai H Z, Wu W T, et al. Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention. Nano Letters, 2020, 20(1): 11-21.
doi: 10.1021/acs.nanolett.9b02182 pmid: 31858807
[44] Peng L H, Wang M Z, Chu Y, et al. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed therapy against melanoma. Science Advances, 2020, 6(27): eaba2735.
doi: 10.1126/sciadv.aba2735
[45] Huang X H, Pan J M, Xu F N, et al. Bacteria-based cancer immunotherapy. Advanced Science, 2021, 8(7): 2003572.
doi: 10.1002/advs.202003572
[1] 张慧,陈华宁,库德莱迪·库尔班,王松娜,刘嘉扬,赵缜,叶丽. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗*[J]. 中国生物工程杂志, 2022, 42(1/2): 104-111.
[2] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[3] 孙莉萍,徐宛,李孟伟,曾茹,翁建. 孢粉素的物理化学性质和生物医学应用研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 92-100.
[4] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[5] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[6] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[7] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[8] 吕海银,王腾飞,裴仁军. 基于核酸适配体的肿瘤免疫治疗进展 *[J]. 中国生物工程杂志, 2019, 39(6): 55-61.
[9] 李振虎,武云飞,潘莹,任兆翔,古向超,唐亮,王辛中,张娟. 肿瘤免疫治疗新药研发及生物标记物研究[J]. 中国生物工程杂志, 2019, 39(2): 38-48.
[10] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[11] 潘晓倩,熊向源,龚妍春,李资玲,李玉萍. 口服抗癌药物纳米载体的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 65-73.
[12] 景园雅, 陈平, 常建锋, 陈苏. 自噬与癌症[J]. 中国生物工程杂志, 2015, 35(11): 70-76.
[13] 陈宽婷, 姚俊, 阮文辉, 魏钦俊, 鲁雅洁, 曹新. 新型γ-聚谷氨酸自组装纳米胶束的制备及用于蛋白载体的研究[J]. 中国生物工程杂志, 2013, 33(4): 101-105.
[14] 丁笠, 王秀云, 齐海迪, 李海鑫, 周雅琼, 陈耀祖, 张娟, 王旻. 抗血管内皮生长因子受体2双价单链抗体的构建表达及其活性研究[J]. 中国生物工程杂志, 2011, 31(8): 1-6.
[15] 黄凯宗 王文研 张光亚. 类弹性蛋白多肽及其在生物医学材料的应用[J]. 中国生物工程杂志, 2010, 30(05): 128-132.