Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (2): 38-48    DOI: 10.13523/j.cb.20190206
精准医疗与伴随诊断专刊     
肿瘤免疫治疗新药研发及生物标记物研究
李振虎,武云飞,潘莹,任兆翔,古向超,唐亮,王辛中,张娟()
基石药业(苏州)有限公司 苏州 215123
The Development of Immuno-oncology Therapy and the Biomarker Research
Zhen-hu LI,Yun-fei WU,Ying PAN,Zhao-xiang REN,Xiang-chao GU,Liang TANG,Xin-zhong WANG,Juan ZHANG()
Cstone Pharmaceuticals (Su Zhou) Co., Ltd. Suzhou 215123, China
 全文: PDF(1949 KB)   HTML
摘要:

由于免疫学和肿瘤学发展的不断深入以及交叉渗透,肿瘤免疫学渐渐成为肿瘤治疗的新热点,为肿瘤治疗带来了新的希望。肿瘤免疫疗法主要是通过激活或正常化机体免疫系统,例如T细胞,NK细胞等,对肿瘤细胞进行杀伤,以期达到缓解或治愈的目的。随着肿瘤免疫研究的不断深入,多种肿瘤免疫新药已成功获批,并展现出了前所未有的多癌种普适性,但提高患者响应率仍是肿瘤免疫治疗领域之重要议题。从肿瘤免疫新靶点的研究,联合治疗的探索及生物标记物的应用三个方面浅析肿瘤免疫发展过程中的机遇与挑战。

关键词: 肿瘤肿瘤免疫PD-(L)1生物标记物    
Abstract:

Due to the development of immunology and oncology, and their cross infiltration and integration, immuno-oncology (IO) has gradually become a innovative hot area, which shed new light on cancer therapy. IO therapies fight tumors through activating or normalizing the body’s immune system, such as T cells, NK cells, etc., aiming to achieve disease remission or cure.. Along with the in-depth research, a variety of new IO therapy drugs have been approved and showed the unprecedented universality in a spectrum of cancer types. However, improving patient response rate is still a critical issue in the field. This article will analyze the opportunities and challenges in the process of IO therapy development from the perspectives of new IO target discovery, the combination strategy and the application of biomarkers.

Key words: Tumor    Immuno-oncology    PD-(L)1    Biomarker
收稿日期: 2019-01-10 出版日期: 2019-03-26
ZTFLH:  Q819  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李振虎
武云飞
潘莹
任兆翔
古向超
唐亮
王辛中
张娟

引用本文:

李振虎,武云飞,潘莹,任兆翔,古向超,唐亮,王辛中,张娟. 肿瘤免疫治疗新药研发及生物标记物研究[J]. 中国生物工程杂志, 2019, 39(2): 38-48.

Zhen-hu LI,Yun-fei WU,Ying PAN,Zhao-xiang REN,Xiang-chao GU,Liang TANG,Xin-zhong WANG,Juan ZHANG. The Development of Immuno-oncology Therapy and the Biomarker Research. China Biotechnology, 2019, 39(2): 38-48.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190206        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I2/38

图1  肿瘤免疫的发展历史(图片改编自[1])
图2  2004项在研肿瘤免疫治疗产品(图片来源[13])
适应症 CTLA-4抗体 PD-1抗体 PD-L1抗体
Yervoy
(Ipilimumab)
Keytruda
(Pembrolizumab)
Opdivo
(Nivolumab)
Libtayo
(Cemiplimab)
Tecentriq
(Atezolizumab)
Imfinzi
(Durvalumab)
Bavencio
(Avelumab)
黑色素瘤 √2011.03 √2014.09 √2014.12
dMMR/MSI-H型结肠癌 √2018.07 √2017.05 √2017.08
宫颈癌 √2018.06
非小细胞肺癌 √2015.10 √2015.03 √2016.10 √2018.02
小细胞肺癌 √2018.08
肾癌 √2018.04 √2015.11
霍奇金淋巴瘤 √2017.03 √2016.05
原发纵膈大B细胞淋巴瘤 √2018.06
头颈癌 √2016.08 √2016.11
梅克尔细胞癌 √2017.03
晚期或转移性胃癌或
胃食管交界处癌
√2017.09
转移性胃癌 √2017.09
肝癌 √2017.09
尿路上皮癌 √2017.05 √2017.02 √2016.05 √2017.05 √2017.05
dMMR/MSI-H型实体瘤 √2017.05
转移性、局部晚期皮肤
鳞状细胞癌
√2018.09
表1  免疫检查点抑制剂获批现状
图3  肿瘤免疫循环(图片来源[15])
图4  肿瘤免疫联合治疗提高生存期模式图 (图片来源[17])
图5  以PD-(L)1为骨架的联合治疗临床试验现状,圆形大小指示临床试验数量的多少(图片来源[13])
图6  肿瘤免疫表型(图片来源[19])
靶点 代表药物 作用机制 联合药物 适应症 临床试验阶段
LAG3 IMP321 LAG-3融合蛋白 Paclitaxel 转移性乳腺癌 Ph II
LAG3 BMS986016 抗LAG-3单克隆抗体 Anti-PD-1 晚期实体瘤和恶性血液肿瘤 Ph III
TIM-3 TSR-022 抗TIM-3单克隆抗体 Anti-PD-1 晚期恶性实体瘤 Ph II
TIGIT OMP-313M32 抗TIGIT单克隆抗体 Anti-PD-1 晚期和转移性实体瘤 Ph I
VISTA JNJ-6160588 抗VISTA单克隆抗体 - 晚期和转移性实体瘤 Ph I
B7-H3 Enoblituzumab 抗B7-H3单克隆抗体 Anti-PD-1 B7-H3表达的复发难治性恶性实体瘤 Ph II
ICOS JTX-2011 抗ICOS 激动性抗体 Anti-PD-1 晚期恶性实体瘤 Ph III
GITR MEDI1873 融合蛋白 - 晚期恶性实体瘤 Ph I
CD27/CD70 Varlilumab 抗CD27激动性抗体 Anti-PD-1 晚期难治性恶性实体瘤和淋巴瘤 Ph II
CD47/SIRPα Hu5F9-G4 抗CD47单克隆抗体 Anti-PD-L1 晚期恶性实体瘤和淋巴瘤 Ph I
IDO Epacadostat IDO-1小分子抑制剂 Anti-PD-1 晚期恶性肿瘤 Ph III
KIR family IPH2101 抗KIR2D单克隆抗体 - 多发性骨髓瘤 Ph II
CD94/NKG2A IPH2201 抗NKG2A单克隆抗体 Anti-PD-L1 晚期头颈部恶性肿瘤 Ph II
表2  肿瘤免疫在研靶点小结
PD-L1检测抗体 28-8(Dako) 22C3(Dako) SP142(Ventana) SP263(Ventana)
药物名称 Opdivo(Nivolumab) Keytruda(Pembrolizumab) Tecentriq(Atezolizumab) Imfinzi(Durvalumab)
药品开发商 百时美施贵(BMS) 默克(Merck) 基因泰克(Genentech) 阿斯利康(Astrazeneca)
检测平台 Autostainer Link 48 Benchmark ULTRA
Cut-off值 非小细胞肺癌
TPS≥1%,5%,10%
非小细胞肺癌
TPS≥1%,50%
非小细胞肺癌
TC≥50% or IC≥10%
尿路上皮癌满足以下条件之一:
TC≥25% or ICP>
1% and IC+ ≥25% or
ICP=1% and IC+ =100%
头颈鳞状细胞癌
TPS≥1%
胃癌及胃食管结合部癌
CPS≥1
宫颈癌CPS≥1 尿路上皮癌IC≥5%
尿路上皮癌TPS≥1% 尿路上皮癌CPS≥10
表3  PD-L1 检测平台
[1] Kirkwood J M, Tarhini A A, Panelli M C , et al. Next generation of immunotherapy for melanoma. J Clin Oncol, 2008,26(20):3445-3455.
doi: 10.1200/JCO.2007.14.6423 pmid: 18612161
[2] Balkwill F, Mantovani A .( Inflammation and cancer: back to virchow? Lancet, 2001,357(9255):539-545.
doi: 10.1016/S0140-6736(00)04046-0
[3] Felgner S, Kocijancic D, Frahm M , et al. Bacteria in cancer therapy: renaissance of an old concept. Int J Microbiol, 2016,2016:8451728.
doi: 10.1155/2016/8451728 pmid: 27051423
[4] Kim R, Emi M, Tanabe K . Cancer immunoediting from immune surveillance to immune escape. Immunology, 2007,121(1):1-14.
doi: 10.1111/j.1365-2567.2007.02587.x pmid: 17386080
[5] Steinman R M, Cohn Z A . Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med, 1973,137(5):1142-1162.
doi: 10.1084/jem.137.5.1142
[6] Zinkernagel R M, Doherty P C . Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature, 1974,251(5475):547-548.
doi: 10.1038/251547a0 pmid: 4547543
[7] Bevan M J . Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med, 1976,143(5):1283-1288.
doi: 10.1084/jem.143.5.1283 pmid: 1083422
[8] Lotze M T, Chang A E, Seipp C A , et al. High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. Responses, treatment-related morbidity, and histologic findings. JAMA, 1986,256(22):3117-3124.
doi: 10.1001/jama.1986.03380220083027
[9] Payne R, Glenn L, Hoen H , et al. Durable responses and reversible toxicity of high-dose interleukin-2 treatment of melanoma and renal cancer in a Community Hospital Biotherapy Program. J Immunother Cancer, 2014,2:13.
doi: 10.1186/2051-1426-2-13 pmid: 24855563
[10] Boyiadzis M, Foon K A . Approved monoclonal antibodies for cancer therapy. Expert Opin Biol Ther, 2008,8(8):1151-1158.
doi: 10.1517/14712598.8.8.1151 pmid: 18613766
[11] Sharma P, Allison J P . The future of immune checkpoint therapy. Science, 2015,348(6230):56-61.
doi: 10.1126/science.aaa8172
[12] Hazarika M, Chuk M K, Theoret M R , et al. U.S. FDA approval summary: nivolumab for treatment of unresectable or metastatic melanoma following progression on ipilimumab. Clin Cancer Res, 2017,23(14):3484-3488.
doi: 10.1158/1078-0432.CCR-16-0712 pmid: 28087644
[13] Tang J, Shalabi A , Hubbard-Lucey V M. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol, 2018,29(1):84-91.
doi: 10.1093/annonc/mdx755 pmid: 29228097
[14] Mahoney K M, Rennert P D, Freeman G J . Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov, 2015,14(8):561-584.
doi: 10.1038/nrd4591 pmid: 26228759
[15] Chen D S, Mellman I . Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013,39(1):1-10.
doi: 10.1016/j.immuni.2013.07.012
[16] Lipson E J, Forde P M, Hammers H J , et al. Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol, 2015,42(4):587-600.
doi: 10.1053/j.seminoncol.2015.05.013
[17] Emens L A, Ascierto P A, Darcy P K , et al. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer, 2017,81:116-129.
doi: 10.1016/j.ejca.2017.01.035 pmid: 28623775
[18] Wolchok J D, Chiarion-Sileni V, Gonzalez R , et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med, 2017,377(14):1345-1356.
doi: 10.1056/NEJMoa1709684 pmid: 28889792
[19] Chen, D S , Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017,541(7637):321-330.
doi: 10.1038/nature21349 pmid: 28102259
[20] Burugu S, Dancsok A R, Nielsen T O . Emerging targets in cancer immunotherapy. Semin Cancer Biol, 2018,52(Pt 2):39-52.
doi: 10.1016/j.semcancer.2017.10.001 pmid: 28987965
[21] Huang R Y, Francois A , McGray A R, et al. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology, 2016,6(1):e1249561.
[22] Shayan G, Srivastava R, Li J , et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology, 2016,6(1):e1261779.
doi: 10.1080/2162402X.2016.1261779 pmid: 28197389
[23] Deuss F A, Gully B S, Rossjohn J , et al. Recognition of nectin-2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT). J Biol Chem, 2017,292(27):11413-11422.
doi: 10.1074/jbc.M117.786483 pmid: 28515320
[24] B?ger C, Behrens H M, Krüger S , et al. The novel negativecheckpointregulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? Oncoimmunology, 2017,6(4):e1293215.
doi: 10.1080/2162402X.2017.1293215 pmid: 5414883
[25] Beatty G L , O’Dwyer P J, Clark J, et al. First-in-human phase I study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. Clin Cancer Res, 2017,23(13):3269-3276.
doi: 10.1158/1078-0432.CCR-16-2272 pmid: 28053021
[26] Brignone C, Gutierrez M, Mefti F , et al. First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med, 2010,8:71.
doi: 10.1186/1479-5876-8-71 pmid: 20653948
[27] Dougall W C, Kurtulus S, Smyth M J , et al. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev, 2017,276(1):112-120.
doi: 10.1111/imr.12518 pmid: 28258695
[28] Liu J, Wang L, Zhao F , et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS One, 2015,10(9):e0137345.
doi: 10.1371/journal.pone.0137345 pmid: 26390038
[29] Gibney G T, Weiner L M, Atkins M B . Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol, 2016,17(12):e542-e551.
doi: 10.1016/S1470-2045(16)30406-5 pmid: 27924752
[30] Savic Prince S, Bubendorf L . Predictive potential and need for standardization of PD-L1 immunohistochemistry. World J Urol, 2018.
doi: 10.1007/s00428-018-2445-7
[31] Meng X, Huang Z, Teng F , et al. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev, 2015,41(10):868-876.
doi: 10.1016/j.ctrv.2015.11.001 pmid: 26589760
[32] Garon E B, Rizvi N A, Hui R , et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med, 2015,372(21):2018-2028.
doi: 10.1056/NEJMoa1501824 pmid: 25891174
[33] Hirsch F R , McElhinny A, Stanforth D, et al. PD-L1 immunohistochemistry assays for lung cancer: Results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol, 2017,12(2):208-222.
doi: 10.1016/j.jtho.2016.11.2228 pmid: 27913228
[34] Marianne J R, Alan S, Anita M , et al. Agreement between programmed cell death ligand-1 diagnostic assays across multiple protein expression cut-offs in non-small cell lung cancer. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 2017,23(14):3585.
doi: 10.1158/1078-0432.CCR-16-2375 pmid: 28073845
[35] Topalian S L, Taube J M, Anders R A , et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer, 2016,16(5):275-287.
doi: 10.1038/nrc.2016.36
[36] Pitt J M, Vétizou M, Daillère R , et al. Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -Extrinsic Factors. Immunity, 2016,44(6):1255-1269.
doi: 10.1016/j.immuni.2016.06.001
[37] Sharma P, Hu-Lieskovan S, Wargo J A , et al. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 2017,168(4):707-723.
doi: 10.1016/j.cell.2017.01.017 pmid: 28187290
[38] Yarchoan M, Hopkins A, Jaffee E M . Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med, 2017,377(25):2500-2501.
doi: 10.1056/NEJMc1713444 pmid: 29262275
[39] Dubsky P C, Fesl C, Singer C F , et al. Abstract GS6-04: The endopredict score predicts residual cancer burden after neoadjuvant chemotherapy and after neoendocrince therapy in HR+/HER2- breast cancer patients from ABCSG 34. Journal of Clinical Oncology, 2018,36(15suppl):589-589.
[40] Rizvi N A, Hellmann M D, Snyder A , et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015,348(6230):124-128.
doi: 10.1126/science.aaa1348 pmid: 25765070
[41] Hellmann M D, Ciuleanu T E, Pluzanski A , et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med, 2018,378(22):2093-2104.
doi: 10.1056/NEJMoa1801946 pmid: 29658845
[42] Boyiadzis M M, Kirkwood J M, Marshall J L , et al. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J Immunother Cancer, 2018,6(1):35.
doi: 10.1186/s40425-018-0342-x pmid: 29754585
[43] FDA approves first cancer treatment for any solid tumor with a specific genetic feature. Oncology Times.[2017-05-23].
[44] Le D T, Durham J N, Smith K N , et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017,357(6349):409-413.
doi: 10.1126/science.aan6733 pmid: 5576142
[45] Dudley J C, Lin M T, Le D T , et al. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res, 2016,22(4):813-820.
doi: 10.1158/1078-0432.CCR-15-1678 pmid: 26880610
[46] Chalmers Z R, Connelly C F, Fabrizio D , et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med, 2017,9(1):34.
doi: 10.1186/s13073-017-0424-2 pmid: 5395719
[47] Higgs B W, Morehouse C A, Streicher K , et al. Interferon gamma messenger RNA signature in tumor biopsies predicts outcomes in patients with non-small-cell lung carcinoma or urothelial cancer treated with durvalumab. Clin Cancer Res, 2018,24(16):3857-3866.
doi: 10.1158/1078-0432.CCR-17-3451 pmid: 29716923
[48] Ayers M, Lunceford J, Nebozhyn M , et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade.[J] Clin Invest. 2017,127(8):2930-2940.
doi: 10.1172/JCI91190
[49] Cristescu R, Mogg R, Ayers M , et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science, 2018, 362(6411):eaar3593.
[1] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[2] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[3] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[4] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[5] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[6] 杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.
[7] 张保惠,熊华龙,张天英,袁权. 基于水疱性口炎病毒(VSV)的溶瘤病毒研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 53-62.
[8] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[9] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[10] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[11] 肖雪筠,唐奇,新华·那比. 靶向肿瘤微环境的CAR-T治疗研究*[J]. 中国生物工程杂志, 2020, 40(12): 67-74.
[12] 何询,张鹏,张俊祥. 类器官的构建与应用进展[J]. 中国生物工程杂志, 2020, 40(12): 82-87.
[13] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[14] 彭贤贵,杨武晨,李佳,苟阳,王平,刘思恒,张云,李艺,张曦. 细胞形态相关技术在血液系统肿瘤中的应用 *[J]. 中国生物工程杂志, 2019, 39(9): 84-90.
[15] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.