Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (5): 106-116    DOI: 10.13523/j.cb.2203003
新冠肺炎疫苗的研究策略     
SARS-CoV-2重组S1和S蛋白疫苗诱导保护性免疫的研究*
钱曼云1,王继伟2,李颢泽2,王瑞华2,刘云2,李亚峰3,4,5,**()
1 山西医科大学基础医学院生物化学与分子生物学教研室 太原 030001
2 南京诺唯赞生物科技股份有限公司 南京 210000
3 山西医科大学第五临床医学院(山西省人民医院)中心实验室 太原 030012
4 肾脏病山西省重点实验室 太原 030012
5 山西医科大学微生态研究院 太原 030001
Study on Protective Immunity Induced by Recombinant SARS-CoV-2 S1 and S Protein Vaccine
QIAN Man-yun1,WANG Ji-wei2,LI Hao-ze2,WANG Rui-hua2,LIU Yun2,LI Ya-feng3,4,5,**()
1 Department of Biochemistry and Molecular Biology,College of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
2 Nanjing Vazyme Biotechnology Co.Ltd., Nanjing 210000, China
3 The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan 030012, China
4 Shanxi Key Laboratory of Nephrology, Taiyuan 030012, China
5 Institute of Microecology, Shanxi Medical University, Taiyuan 030001, China
 全文: PDF(4266 KB)   HTML
摘要:

目的:评价新型冠状病毒(SARS-CoV-2)重组S1蛋白和S蛋白疫苗对SARS-CoV-2的免疫保护效果。方法:将SARS-CoV-2重组S1蛋白和S蛋白分别联合氢氧化铝佐剂以0.1 μg/只、1 μg/只、5 μg/只、10 μg/只不同剂量接种6~8周BALB/c纯系健康雌性小鼠。第二次免疫后采血通过酶联免疫吸附试验(ELISA)检测血清中IgG抗体效价,通过假病毒中和试验比较免疫小鼠血清对SARS-CoV-2野生型株(WT)、英国株(B.1.1.7)、巴西株(P.1)、印度株(B.1.617.2)、Mu毒株(B.1.621)和南非株(501Y.V2-1)六种假病毒毒株中和活性效价,取脾细胞通过酶联免疫斑点技术(ELISpot)检测免疫小鼠的细胞免疫水平。结果:SARS-CoV-2重组S和S1蛋白都能诱导小鼠产生较强的IgG抗体水平。免疫S1蛋白的小鼠血清对SARS-CoV-2野生型株、英国株、巴西株有明显的中和活性,免疫S蛋白的小鼠血清除了对SARS-CoV-2野生型株、英国株、巴西株有明显中和活性之外,对印度株也有明显的中和活性,两种蛋白质免疫的小鼠血清均对野生型株中和效果最强。S蛋白免疫的小鼠脾细胞能够显著诱导出γ干扰素(IFN-γ)和白介素-4(IL-4)的产生。S蛋白诱导产生的IgG抗体、中和抗体、细胞免疫水平均高于S1。结论:SARS-CoV-2重组S蛋白疫苗能够诱导产生较强的保护性免疫应答。

关键词: 新型冠状病毒S蛋白S1蛋白新型冠状病毒突变株保护性免疫应答    
Abstract:

To evaluate the immune protection of recombinant SARS-CoV-2 S1 and S protein vaccine. Methods: Recombinant SARS-CoV-2 S1 or S protein combined with aluminum hydroxide adjuvant was inoculated at different doses of 0.1 μg, 1 μg, 5 μg and 10 μg per mouse for 6-8 weeks. Serum IgG antibody titers were detected by enzyme linked immunosorbent assay (ELISA) after second immunization. The serum neutralizing antibody titers of the immunized mice against pseudotype SARS-CoV-2-Fluc WT, B.1.1.7, P.1, B.1.617.2, B.1.621, 501Y.V2-1 strains were compared by pseudovirus neutralization test. The cellular immune levels of sera were detected by enzyme-linked immunospot assay (ELISpot).Results: Both SARS-CoV-2 S and S1 proteins could induce strong IgG antibody levels in mouse model. The sera of mice immunized with S1 protein showed obvious neutralization activity against SARS-CoV-2-Fluc WT, B.1.1.7 and P.1. The sera of mice immunized with the recombinant S protein also showed obvious neutralization activity against SARS-CoV-2-Fluc B.1.617.2 in addition to SARS-CoV-2-Fluc WT, B.1.1.7 and P.1. The serum of mice immunized with two kinds of proteins had the strongest neutralizing effect on SARS-CoV-2-Fluc WT. Mouse spleen cells immunized with S protein could significantly induce the production of interferon-γ (IFN-γ) and interleukin-4 (IL-4). The levels of IgG antibody, neutralizing antibody and cellular immunity induced by S protein were higher than those of S1.Conclusion: Recombinant SARS-CoV-2 S protein vaccine can induce protective immune responses.

Key words: SARS-CoV-2    S protein    S1 protein    SARS-CoV-2 mutant    Protective immune responses
收稿日期: 2022-03-02 出版日期: 2022-06-17
ZTFLH:  Q819  
基金资助: *山西省卫生健康委科研课题计划任务书(15)资助项目
通讯作者: 李亚峰     E-mail: muran2001@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
钱曼云
王继伟
李颢泽
王瑞华
刘云
李亚峰

引用本文:

钱曼云,王继伟,李颢泽,王瑞华,刘云,李亚峰. SARS-CoV-2重组S1和S蛋白疫苗诱导保护性免疫的研究*[J]. 中国生物工程杂志, 2022, 42(5): 106-116.

QIAN Man-yun,WANG Ji-wei,LI Hao-ze,WANG Rui-hua,LIU Yun,LI Ya-feng. Study on Protective Immunity Induced by Recombinant SARS-CoV-2 S1 and S Protein Vaccine. China Biotechnology, 2022, 42(5): 106-116.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2203003        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I5/106

图1  SARS-CoV-2 S1和S质粒图
图2  SARS-CoV-2 S1蛋白和S蛋白SDS-PAGE结果图
组别 名称 免疫剂量/μg 免疫体积/μL
免疫前组 空白对照组 0 0
SARS-CoV-2重组S1蛋白疫苗免疫组 S1-Al(OH)3-0.1 μg 0.1 50
S1-Al(OH)3-1 μg 1 50
S1-Al(OH)3-5 μg 5 50
S1-Al(OH)3-10 μg 10 50
SARS-CoV-2重组S蛋白疫苗免疫组 S-Al(OH)3-0.1 μg 0.1 50
S-Al(OH)3-1 μg 1 50
S-Al(OH)3-5 μg 5 50
S-Al(OH)3-10 μg 10 50
表1  SARS-CoV-2重组S1蛋白和S蛋白疫苗
图3  酶联免疫吸附试验检测小鼠血清中IgG抗体效价
图4  不同剂量的SARS-CoV-2重组S1蛋白和S蛋白对免疫小鼠中和抗体产生的影响
图5  免疫小鼠血清对不同SARS-CoV-2株的中和活性效价
图6  SARS-CoV-2重组S1蛋白和S蛋白免疫小鼠脾细胞产生的细胞免疫反应
表S1  SARS-CoV-2 S1蛋白和S蛋白氨基酸序列
[1] Harrison A G, Lin T, Wang P H. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends in Immunology, 2020, 41(12): 1100-1115.
doi: 10.1016/j.it.2020.10.004 pmid: 33132005
[2] 陈一晖, 李武. 新冠肺炎(COVID-19)的临床症状、临床分类与诊断. 基因组学与应用生物学, 2020, 39(8): 3904-3907.
Chen Y H, Li W. The clinical symptoms, classification and diagnosis of COVID-19. Genomics and Applied Biology, 2020, 39(8): 3904-3907.
[3] Fathizadeh H, Afshar S, Masoudi M R, et al. SARS-CoV-2 (COVID-19) vaccines structure, mechanisms and effectiveness: a review. International Journal of Biological Macromolecules, 2021, 188: 740-750.
doi: 10.1016/j.ijbiomac.2021.08.076 pmid: 34403674
[4] Cai Y F, Zhang J, Xiao T S, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020, 369(6511): 1586-1592.
doi: 10.1126/science.abd4251
[5] Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579 (7798): 270-273.
doi: 10.1038/s41586-020-2012-7
[6] Wrapp D, Wang N S, Corbett K S, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483): 1260-1263.
doi: 10.1126/science.abb2507
[7] Nie J, Li Q, Wu J, et al. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nature Protocols, 2020, 15 (11): 3699-3715.
doi: 10.1038/s41596-020-0394-5
[8] Slota M, Lim J B, Dang Y S, et al. ELISpot for measuring human immune responses to vaccines. Expert Review of Vaccines, 2011, 10(3): 299-306.
doi: 10.1586/erv.10.169
[9] 王玉珀, 任丽萍, 张明霞. 新型冠状病毒IgM和IgG抗体检测结果分析及抗体数值变化监测. 中国药物与临床, 2021, 21(6): 1021-1022.
Wang Y P, Ren L P, Zhang M X. Analysis of novel coronavirus IgM and IgG antibody results and monitoring of changes in antibody values. Chinese Remedies & Clinics, 2021, 21(6): 1021-1022.
[10] Dan J M, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, 371(6529): eabf4063.
doi: 10.1126/science.abf4063
[11] Logunov D Y, Dolzhikova I V, Zubkova O V, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet (London, England), 2020, 396(10255): 887-897.
doi: 10.1016/S0140-6736(20)31866-3
[12] 潘婷, 郭彦, 邱洪杰, 等. 中东呼吸综合征冠状病毒S1蛋白在昆虫细胞中的重组表达及免疫效果评价. 生物技术通讯, 2015, 26(2): 199-202.
Pan T, Guo Y, Qiu H J, et al. Preparation and immunization assessment of recombinant MERS-CoV S 1 protein expressed by insect cells. Letters in Biotechnology, 2015, 26(2): 199-202.
[13] Johnson B A, Xie X, Bailey A L, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 2021, 591 (7849): 293-299.
doi: 10.1038/s41586-021-03237-4
[14] Ramanathan M, Ferguson I D, Miao W L, et al. SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. The Lancet Infectious Diseases, 2021, 21(8): 1070.
[15] Tang J W, Tambyah P A, Hui D S. Emergence of a new SARS-CoV-2 variant in the UK. The Journal of Infection, 2021, 82(4): e27-e28.
[16] Tortorici M A, Walls A C, Lang Y, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nature Structural & Molecular Biology, 2019, 26 (6): 481-489.
doi: 10.1038/s41594-019-0233-y
[17] Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv, 2020. DOI: 10.1101/2020.12.21.20248640.
doi: 10.1101/2020.12.21.20248640
[18] Fratev F. N501Y and K417N mutations in the spike protein of SARS-CoV-2 alter the interactions with both hACE2 and human-derived antibody: a free energy of perturbation retrospective study. Journal of Chemical Information and Modeling, 2021, 61(12): 6079-6084.
doi: 10.1021/acs.jcim.1c01242 pmid: 34806876
[19] Collier D A, de Marco A, Ferreira I A T M, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593 (7857): 136-141.
doi: 10.1038/s41586-021-03412-7
[20] Wang P F, Casner R G, Nair M S, et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host & Microbe, 2021, 29(5): 747-751.e4.
[21] Dejnirattisai W, Zhou D M, Supasa P, et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell, 2021, 184(11): 2939-2954.e9.
doi: 10.1016/j.cell.2021.03.055 pmid: 33852911
[22] Hoffmann M, Arora P, Groβ R, et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 2021, 184(9): 2384-2393.e12.
doi: 10.1016/j.cell.2021.03.036 pmid: 33794143
[23] Peacock T P, Sheppard C M, Brown J C, et al. The SARS-CoV-2 variants associated with infections in India, B.1.617, show enhanced spike cleavage by furin. bioRxiv, 2021. DOI: 10.1101/2021.05.28.446163.
doi: 10.1101/2021.05.28.446163
[24] Ferreira I, Datir R, Papa G, et al. SARS-CoV-2 B.1.617 emergence and sensitivity to vaccine-elicited antibodies. bioRxiv, 2021. DOI: 10.1101/2021.05.08.443253.
doi: 10.1101/2021.05.08.443253
[25] Chatterjee D, Tauzin A, Laumaea A, et al. Antigenicity of the mu (B.1.621) and A.2.5 SARS-CoV-2 spikes. Viruses, 2022, 14(1): 144.
doi: 10.3390/v14010144
[26] Li G, Fan Y H, Lai Y N, et al. Coronavirus infections and immune responses. Journal of Medical Virology, 2020, 92(4): 424-432.
doi: 10.1002/jmv.25685
[27] de Wilde A H, Snijder E J, Kikkert M, et al. Host factors in coronavirus replication. Current Topics in Microbiology and Immunology, 2018, 419: 1-42.
[28] 张竞文, 胡欣, 金鹏飞. 新型冠状病毒引起的细胞因子风暴及其药物治疗. 中国药学杂志, 2020, 55(5): 333-336.
Zhang J W, Hu X, Jin P F. Cytokine storm induced by SARS-CoV-2 and the drug therapy. Chinese Pharmaceutical Journal, 2020, 55(5): 333-336.
[29] Nir-Paz R, Abutbul A, Moses A E, et al. Ongoing epidemic of Mycoplasma pneumoniae infection in Jerusalem, Israel, 2010 to 2012. Eurosurveillance, 2012, 17(8): 20095.
[30] Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584 (7819): 115-119.
doi: 10.1038/s41586-020-2380-z
[31] Chi X Y, Yan R H, Zhang J, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science, 2020, 369(6504): 650-655.
doi: 10.1126/science.abc6952
[32] Xia S, Zhu Y, Liu M, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & Molecular Immunology, 2020, 17 (7): 765-767.
[33] Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduction and Targeted Therapy, 2020, 5: 283.
doi: 10.1038/s41392-020-00426-x pmid: 33277466
[1] 杨依,张晴云,梅坤荣. 新型冠状病毒亚单位疫苗研究进展及现状*[J]. 中国生物工程杂志, 2022, 42(5): 124-138.
[2] 贠涛,巩玥,谷芃,徐冰冰,李瑾,赵洗尘. 中国与“一带一路”参与国家抗击新冠肺炎疫情的国际科技合作现状与展望[J]. 中国生物工程杂志, 2021, 41(7): 110-121.
[3] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[4] 张赛,王刚,刘仲明,李辉军,汪大明,钱纯亘. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
[5] 范月蕾,王跃,王恒哲,李丹丹,毛开云. 新型冠状病毒体外诊断技术研发现状与展望 *[J]. 中国生物工程杂志, 2021, 41(2/3): 150-161.
[6] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[7] 程永庆,刘金毅,林福玉,童梅. 重组人干扰素α1b与新型冠状病毒肺炎防治[J]. 中国生物工程杂志, 2020, 40(1-2): 71-77.
[8] 林福玉,刘金毅,程永庆. 重组人干扰素α1b抗新型冠状病毒的基础和临床研究进展[J]. 中国生物工程杂志, 2020, 40(12): 1-7.
[9] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.
[10] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[11] 李多, 杨丽娟, 赵玉娇, 潘玥, 陈俊英, 付娟娟, 黄新伟, 邱丽娟, 孙强明. 研究报告重组Ⅱ型登革病毒NS1的表达及其免疫原性的研究[J]. 中国生物工程杂志, 2014, 34(9): 4-8.
[12] 丁岗强 张君 杨凤 杨键 向光明 唐霓 黄爱龙. HepG2细胞膜上乙型肝炎病毒前S1蛋白(preS1)结合蛋白的研究[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[13] 黄海杰,陈雄庭. 植物泛素/26S蛋白酶体途径研究进展[J]. 中国生物工程杂志, 2008, 28(7): 127-132.
[14] . Georgia大学分离植物抗高温蛋白基因成功[J]. 中国生物工程杂志, 1986, 6(2): 81-82.
[15] GNigelGodson;彭金枝. 疟疾疫苗的分子途经[J]. 中国生物工程杂志, 1986, 6(2): 40-45.