Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (4): 93-101    DOI: 10.13523/j.cb.2110013
综述     
革兰氏阴性菌TonB依赖性受体的功能与结构研究进展*
王娅玲1,2,3,程安春1,2,3,刘马峰1,2,3,**()
1 四川农业大学动物医学院预防兽医研究所 成都 611130
2 四川农业大学动物医学院禽病防治中心 成都 611130
3 动物疫病与人类健康四川省重点实验室 成都 611130
A Review on Structure and Functions of TonB-dependent Receptors in Gram-negative Bacteria
WANG Ya-ling1,2,3,CHENG An-chun1,2,3,LIU Ma-feng1,2,3,**()
1 Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
2 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
3 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
 全文: PDF(1290 KB)   HTML
摘要:

为维持生长所需,革兰氏阴性菌需要从外界摄取多种营养物质。分子量小于600 Da的分子可以通过自由扩散的方式通过革兰氏阴性菌的外膜,而大分子物质则需要特殊的转运系统才能将其转运至革兰氏阴性菌的胞内。革兰氏阴性菌对大分子营养物质的识别和转运主要由TonB依赖性受体负责完成。所有革兰氏阴性菌中均有TonB依赖性受体的存在,然而不同种类的革兰氏阴性菌拥有TonB依赖性受体的数量不同且功能各异。最近研究表明,TonB依赖性受体不仅参与了铁、血红素、锰、锌、镍、维生素、碳水化合物等多种营养物质的摄取,而且参与了蛋白酶的分泌。为对TonB依赖性受体提供更为深入和系统的理解,详细介绍了目前已知的TonB依赖性受体的功能及结构,以期为更进一步探知TonB依赖性受体未知功能提供可参考依据。

关键词: 革兰氏阴性菌TonB依赖性受体功能    
Abstract:

Bacteria need to absorb a variety of nutrients from the outer environments for their survival and replication. The small molecules less than 600 Da can freely pass the outer membrane of the gram-negative bacteria. However, for the transportation of the large size of nutrients, the TonB-dependent receptors of gram-negative bacteria are required. TonB-dependent receptors have been found to be present in all the sequenced gram-negative bacteria, but the number of TonB dependent receptors and their functions are various in different bacteria. It has been shown that TonB-dependent receptors were not only involved in the transportation of many different nutrients, such as iron, heme, manganese, zinc, vitamin, and carbohydrate, but also the secretion of protease. This review provided detailed information about the functions and structure of TonB-dependent receptors from different gram-negative bacteria. It will be helpful for the further understanding of the new functions of TonB-dependent receptors.

Key words: Gram-negative bacteria    TonB-dependent receptor    Function
收稿日期: 2021-10-13 出版日期: 2022-05-05
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(32172851);四川省科技计划应用基础研究项目(2020YJ0344)
通讯作者: 刘马峰     E-mail: liumafengra@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王娅玲
程安春
刘马峰

引用本文:

王娅玲,程安春,刘马峰. 革兰氏阴性菌TonB依赖性受体的功能与结构研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 93-101.

WANG Ya-ling,CHENG An-chun,LIU Ma-feng. A Review on Structure and Functions of TonB-dependent Receptors in Gram-negative Bacteria. China Biotechnology, 2022, 42(4): 93-101.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2110013        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I4/93

Organism(s) Name Substrate Function PDB ID Reference
Escherichia coli FhuA Iron Transport Fe3+ 1BY3 [53]
FepA Iron Transport Fe3+ 1FEP [54]
FecA Iron Transport Fe3+ 1KMO [55]
BtuB Vitamin B12 Transport Vitamin B12 1NQE [56]
Cir 2HDF [57]
Fiu Iron Transport Fe3+ 6BPM [58]
YddB Ferredoxin Transport Ferredoxin 6OFR [59]
YncD 6V81 [60]
Pseudomonas aeruginosa FptA Iron Transport Fe3+ 1XKW [61]
FpvA Iron Transport Fe3+ 2W75 [62]
PirA Siderophore-drug Transport siderophore-drug molecules 5FP2 [63]
PiuA Siderophore-drug Transport siderophore-drug molecules 5FOK [63]
PiuD Siderophore-drug Transport siderophore-drug molecules 5NEC [64]
PfeA Iron Transport Fe3+ 5M9B [65]
OprC Copper Transport Copper 6FOK
FoxA Iron Transport Fe3+ 6I98 [66]
Yersinia pestis FyuA Iron Transport Fe3+ 4EPA [67]
Neisseria TbpA Transferrin Transport Fe3+ 3V89 [68]
FrpB Iron Transport Fe3+ 4B7O [69]
ZnuD Zinc Transport zinc 4RVW [70]
Pectobacterium carotovorum FusA Ferredoxin Transport Ferredoxin 4ZGV [71]
Serratia marcescens HasR Heme Transport heme 3CSN [26]
Porphyromonas gingivalis RagA oligopeptide Transport oligopeptide 6SLI [72]
Bacteroides polymorpha SusC Starch Transport oligosaccharide 5T3R [73]
Shigella dysenteriae ShuA Heme Transport heme 3FHH [74]
表1  已知革兰氏阴性菌TonB依赖性受体晶体结构汇总
图1  TonB依赖性受体FepA结构(PDB ID:1FEP)
[1] Schalk I J, Mislin G L A, Brillet K. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Current Topics in Membranes, 2012, 69: 37-66.
[2] Zeng X M, Xu F Z, Lin J. Specific TonB-ExbB-ExbD energy transduction systems required for ferric enterobactin acquisition in Campylobacter. FEMS Microbiology Letters, 2013, 347(1): 83-91.
doi: 10.1111/1574-6968.12221
[3] Gómez-Santos N, Glatter T, Koebnik R, et al. A TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane. Nature Communications, 2019, 10: 1360.
doi: 10.1038/s41467-019-09366-9 pmid: 30911012
[4] Palmer L D, Skaar E P. Transition metals and virulence in bacteria. Annual Review of Genetics, 2016, 50: 67-91.
doi: 10.1146/annurev-genet-120215-035146
[5] Klebba P E, Newton S M C, Six D A, et al. Iron acquisition systems of gram-negative bacterial pathogens define TonB-dependent pathways to novel antibiotics. Chemical Reviews, 2021, 121(9): 5193-5239.
doi: 10.1021/acs.chemrev.0c01005
[6] Khan A, Singh P, Srivastava A. Synthesis, nature and utility of universal iron chelator - siderophore: a review. Microbiological Research, 2018, 212-213: 103-111.
doi: 10.1016/j.micres.2017.10.012
[7] Majumdar A, Trinh V, Moore K J, et al. Conformational rearrangements in the N-domain of Escherichia coli FepA during ferric enterobactin transport. The Journal of Biological Chemistry, 2020, 295(15): 4974-4984.
doi: 10.1074/jbc.RA119.011850
[8] Wang Y J, Chen X B, Hu Y M, et al. Evolution and sequence diversity of FhuA in Salmonella and Escherichia. Infection and Immunity, 2018, 86(11): e00573-e00518.
[9] Carson S D, Klebba P E, Newton S M, et al. Ferric enterobactin binding and utilization by Neisseria gonorrhoeae. Journal of Bacteriology, 1999, 181(9): 2895-2901.
pmid: 10217784
[10] Bouvier B, Cézard C. Impact of iron coordination isomerism on pyoverdine recognition by the FpvA membrane transporter of Pseudomonas aeruginosa. Physical Chemistry Chemical Physics: PCCP, 2017, 19(43): 29498-29507.
doi: 10.1039/C7CP04529H
[11] Lan P, Yan R S, Lu Y, et al. Genetic diversity of siderophores and hypermucoviscosity phenotype in Klebsiella pneumoniae. Microbial Pathogenesis, 2021, 158: 105014.
doi: 10.1016/j.micpath.2021.105014
[12] Rakin A, Schneider L, Podladchikova O. Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia. Frontiers in Cellular and Infection Microbiology, 2012, 2: 151.
[13] Cornelissen C N, Hollander A. TonB-dependent transporters expressed by Neisseria gonorrhoeae. Frontiers in Microbiology, 2011, 2: 117.
doi: 10.3389/fmicb.2011.00117 pmid: 21747812
[14] Noinaj N, Buchanan S K, Cornelissen C N. The transferrin-iron import system from pathogenic Neisseria species. Molecular Microbiology, 2012, 86(2): 246-257.
doi: 10.1111/mmi.12002
[15] Ostberg K L, DeRocco A J, Mistry S D, et al. Conserved regions of gonococcal TbpB are critical for surface exposure and transferrin iron utilization. Infection and Immunity, 2013, 81(9): 3442-3450.
doi: 10.1128/IAI.00280-13 pmid: 23836816
[16] DeRocco A J, Yost-Daljev M K, Kenney C D, et al. Kinetic analysis of ligand interaction with the gonococcal transferrin-iron acquisition system. BioMetals, 2009, 22(3): 439-451.
doi: 10.1007/s10534-008-9179-y pmid: 19048191
[17] Brooks C L, Arutyunova E, Lemieux M J. The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70(Pt 10): 1312-1317.
doi: 10.1107/S2053230X14019372
[18] Cash D R, Noinaj N, Buchanan S K, et al. Beyond the crystal structure: insight into the function and vaccine potential of TbpA expressed by Neisseria gonorrhoeae. Infection and Immunity, 2015, 83(11): 4438-4449.
doi: 10.1128/IAI.00762-15
[19] Farahani M F, Esmaelizad M, Jabbari A R. Investigation of iron uptake and virulence gene factors (fur, tonB, exbD, exbB, hgbA, hgbB1, hgbB2 and tbpA) among isolates of Pasteurella multocida from Iran. Iranian Journal of Microbiology, 2019, 11(3): 191-197.
[20] Pogoutse A K, Moraes T F. Iron acquisition through the bacterial transferrin receptor. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52(3): 314-326.
doi: 10.1080/10409238.2017.1293606
[21] Manfredi P, Lauber F, Renzi F, et al. New iron acquisition system in Bacteroidetes. Infection and Immunity, 2015, 83(1): 300-310.
doi: 10.1128/IAI.02042-14 pmid: 25368114
[22] Liu M F, Huang M, Zhu D K, et al. Identifying the genes responsible for iron-limited condition in Riemerella anatipestifer CH-1 through RNA-seq-based analysis. BioMed Research International, 2017, 2017: 8682057.
[23] Mosbahi K, Wojnowska M, Albalat A, et al. Bacterial iron acquisition mediated by outer membrane translocation and cleavage of a host protein. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6840-6845.
[24] Huang W L, Wilks A. Extracellular heme uptake and the challenge of bacterial cell membranes. Annual Review of Biochemistry, 2017, 86: 799-823.
doi: 10.1146/annurev-biochem-060815-014214
[25] Wandersman C, Delepelaire P. Haemophore functions revisited. Molecular Microbiology, 2012, 85(4): 618-631.
doi: 10.1111/j.1365-2958.2012.08136.x pmid: 22715905
[26] Krieg S, Huché F, Diederichs K, et al. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(4): 1045-1050.
[27] Zambolin S, Clantin B, Chami M, et al. Structural basis for haem piracy from host haemopexin by Haemophilus influenzae. Nature Communications, 2016, 7: 11590.
doi: 10.1038/ncomms11590 pmid: 27188378
[28] Smalley J W, Byrne D P, Birss A J, et al. HmuY haemophore and gingipain proteases constitute a unique syntrophic system of haem acquisition by Porphyromonas gingivalis. PLoS One, 2011, 6(2): e17182.
doi: 10.1371/journal.pone.0017182
[29] Liu M F, Liu S Q, Huang M, et al. An exposed outer membrane hemin-binding protein facilitates hemin transport by a TonB-dependent receptor in Riemerella anatipestifer. Applied and Environmental Microbiology, 2021, 87(15): e0036721.
doi: 10.1128/AEM.00367-21
[30] Mokry D Z, Nadia-Albete A, Johnson M K, et al. Spectroscopic evidence for a 5-coordinate oxygenic ligated high spin ferric heme moiety in the Neisseria meningitidis hemoglobin binding receptor. Biochimica et Biophysica Acta (BBA) - General Subjects, 2014, 1840(10): 3058-3066.
doi: 10.1016/j.bbagen.2014.06.009
[31] Wong C T, Xu Y, Gupta A, et al. Structural analysis of haemoglobin binding by HpuA from the Neisseriaceae family. Nature Communications, 2015, 6: 10172.
doi: 10.1038/ncomms10172 pmid: 26671256
[32] Bidmos F A, Chan H, Praekelt U, et al. Investigation into the antigenic properties and contributions to growth in blood of the meningococcal haemoglobin receptors, HpuAB and HmbR. PLoS One, 2015, 10(7): e0133855.
doi: 10.1371/journal.pone.0133855
[33] Kammerman M T, Bera A, Wu R R, et al. Molecular insight into TdfH-mediated zinc piracy from human calprotectin by Neisseria gonorrhoeae. mBio, 2020, 11(3): e00949-e00920.
[34] Gaddy J A, Radin J N, Loh J T, et al. The host protein calprotectin modulates the Helicobacter pylori cag type IV secretion system via zinc sequestration. PLoS Pathogens, 2014, 10(10): e1004450.
doi: 10.1371/journal.ppat.1004450
[35] Maurakis S, Keller K, Maxwell C N, et al. The novel interaction between Neisseria gonorrhoeae TdfJ and human S100A 7 allows gonococci to subvert host zinc restriction. PLoS Pathogens, 2019, 15(8): e1007937.
doi: 10.1371/journal.ppat.1007937
[36] Si M, Zhao C, Burkinshaw B, et al. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(11): E2233-E2242.
[37] Si M R, Wang Y, Zhang B, et al. The type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition. Cell Reports, 2017, 20(4): 949-959.
doi: 10.1016/j.celrep.2017.06.081
[38] Han Y Y, Wang T T, Chen G K, et al. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS Pathogens, 2019, 15(12): e1008198.
doi: 10.1371/journal.ppat.1008198
[39] Gao P, Guo K, Pu Q Q, et al. oprC impairs host defense by increasing the quorum-sensing-mediated virulence of Pseudomonas aeruginosa. Frontiers in Immunology, 2020, 11: 1696.
doi: 10.3389/fimmu.2020.01696
[40] Gu W Y, Farhan Ul Haque M, Baral B S, et al. A TonB-dependent transporter is responsible for methanobactin uptake by Methylosinus trichosporium OB3b. Applied and Environmental Microbiology, 2016, 82(6): 1917-1923.
doi: 10.1128/AEM.03884-15
[41] de Reuse H, Vinella D, Cavazza C. Common themes and unique proteins for the uptake and trafficking of nickel, a metal essential for the virulence of Helicobacter pylori. Frontiers in Cellular and Infection Microbiology, 2013, 3: 94.
[42] Stoof J, Kuipers E J, Vliet A H M. Characterization of NikR-responsive promoters of urease and metal transport genes of Helicobacter mustelae. BioMetals, 2009, 23(1): 145-159.
doi: 10.1007/s10534-009-9275-7
[43] Nilaweera T D, Nyenhuis D A, Cafiso D S. Structural intermediates observed only in intact Escherichia coli indicate a mechanism for TonB-dependent transport. eLife, 2021, 10: e68548.
doi: 10.7554/eLife.68548
[44] Balusek C, Gumbart J C. Role of the native outer-membrane environment on the transporter BtuB. Biophysical Journal, 2016, 111(7): 1409-1417.
doi: S0006-3495(16)30755-X pmid: 27705764
[45] Cramer W A, Sharma O, Zakharov S D. On mechanisms of colicin import: the outer membrane quandary. The Biochemical Journal, 2018, 475(23): 3903-3915.
doi: 10.1042/BCJ20180477
[46] Ding T, Schloss P D. Dynamics and associations of microbial community types across the human body. Nature, 2014, 509(7500): 357-360.
doi: 10.1038/nature13178
[47] Bolam D N, van den Berg B. TonB-dependent transport by the gut microbiota: novel aspects of an old problem. Current Opinion in Structural Biology, 2018, 51: 35-43.
doi: 10.1016/j.sbi.2018.03.001
[48] Pollet R M, Martin L M, Koropatkin N M. TonB-dependent transporters in the Bacteroidetes: unique domain structures and potential functions. Molecular Microbiology, 2021, 115(3): 490-501.
doi: 10.1111/mmi.14683
[49] Larsbrink J, Rogers T E, Hemsworth G R, et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature, 2014, 506 (7489): 498-502.
doi: 10.1038/nature12907
[50] Ndeh D, Rogowski A, Cartmell A, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature, 2017, 544 (7648): 65-70.
doi: 10.1038/nature21725
[51] Rolbetzki A, Ammon M, Jakovljevic V, et al. Regulated secretion of a protease activates intercellular signaling during fruiting body formation in M. xanthus. Developmental Cell, 2008, 15(4): 627-634.
doi: 10.1016/j.devcel.2008.08.002 pmid: 18854146
[52] Ferguson A D, Hofmann E, Coulton J W, et al. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science, 1998, 282(5397): 2215-2220.
pmid: 9856937
[53] Locher K P, Rees B, Koebnik R, et al. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell, 1998, 95(6): 771-778.
pmid: 9865695
[54] Buchanan S K, Smith B S, Venkatramani L, et al. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nature Structural Biology, 1999, 6 (1): 56-63.
pmid: 9886293
[55] Ferguson A D, Chakraborty R, Smith B S, et al. Structural basis of gating by the outer membrane transporter FecA. Science, 2002, 295(5560): 1715-1719.
pmid: 11872840
[56] Chimento D P, Mohanty A K, Kadner R J, et al. Substrate-induced transmembrane signaling in the cobalamin transporter BtuB. Nature Structural & Molecular Biology, 2003, 10 (5): 394-401.
doi: 10.1038/nsb914
[57] Buchanan S K, Lukacik P, Grizot S, et al. Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import. The EMBO Journal, 2007, 26(10): 2594-2604.
doi: 10.1038/sj.emboj.7601693
[58] Grinter R, Lithgow T. The structure of the bacterial iron-catecholate transporter Fiu suggests that it imports substrates via a two-step mechanism. Journal of Biological Chemistry, 2019, 294(51): 19523-19534.
doi: 10.1074/jbc.RA119.011018 pmid: 31712312
[59] Grinter R, Leung P M, Wijeyewickrema L C, et al. Protease-associated import systems are widespread in Gram-negative bacteria. PLoS Genetics, 2019, 15(10): e1008435.
doi: 10.1371/journal.pgen.1008435
[60] Grinter R, Lithgow T. The crystal structure of the TonB-dependent transporter YncD reveals a positively charged substrate-binding site. Acta Crystallographica Section D, Structural Biology, 2020, 76(Pt 5): 484-495.
doi: 10.1107/S2059798320004398
[61] Cobessi D, Celia H, Pattus F. Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. Journal of Molecular Biology, 2005, 352(4): 893-904.
pmid: 16139844
[62] Greenwald J, Nader M, Celia H, et al. FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Molecular Microbiology, 2009, 72(5): 1246-1259.
pmid: 19504741
[63] Moynié L, Luscher A, Rolo D, et al. Structure and function of the PiuA and PirA siderophore-drug receptors from Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2017, 61(4): e02531-e02516.
[64] Luscher A, Moynié L, Auguste P S, et al. TonB-dependent receptor repertoire of Pseudomonas aeruginosa for uptake of siderophore-drug conjugates. Antimicrobial Agents and Chemotherapy, 2018, 62(6): e00097-e00018.
[65] Moynié L, Milenkovic S, Mislin G L A, et al. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nature Communications, 2019, 10: 3673.
doi: 10.1038/s41467-019-11508-y
[66] Josts I, Veith K, Tidow H. Ternary structure of the outer membrane transporter FoxA with resolved signalling domain provides insights into TonB-mediated siderophore uptake. eLife, 2019, 8: e48528.
doi: 10.7554/eLife.48528
[67] Lukacik P, Barnard T J, Keller P W, et al. Structural engineering of a phage lysin that targets gram-negative pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25): 9857-9862.
[68] Noinaj N, Easley N C, Oke M, et al. Structural basis for iron piracy by pathogenic Neisseria. Nature, 2012, 483 (7387): 53-58.
doi: 10.1038/nature10823
[69] Saleem M, Prince S M, Rigby S E J, et al. Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis. PLoS One, 2013, 8(2): e56746.
doi: 10.1371/journal.pone.0056746
[70] Calmettes C, Ing C, Buckwalter C M, et al. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nature Communications, 2015, 6: 7996.
doi: 10.1038/ncomms8996 pmid: 26282243
[71] Grinter R, Josts I, Mosbahi K, et al. Structure of the bacterial plant-ferredoxin receptor FusA. Nature Communications, 2016, 7: 13308.
doi: 10.1038/ncomms13308 pmid: 27796364
[72] Madej M, White J B R, Nowakowska Z, et al. Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nature Microbiology, 2020, 5 (8): 1016-1025.
doi: 10.1038/s41564-020-0716-y
[73] Glenwright A J, Pothula K R, Bhamidimarri S P, et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature, 2017, 541 (7637): 407-411.
doi: 10.1038/nature20828
[74] Cobessi D, Meksem A, Brillet K. Structure of the heme/hemoglobin outer membrane receptor ShuA from Shigella dysenteriae: heme binding by an induced fit mechanism. Proteins, 2010, 78(2): 286-294.
doi: 10.1002/prot.22539
[75] Gresock M G, Postle K. Going outside the TonB box: identification of novel FepA-TonB interactions in vivo. Journal of Bacteriology, 2017, 199(10): e00649-e00616.
[76] Mills A, Le H T, Duong F. TonB-dependent ligand trapping in the BtuB transporter. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016, 1858(12): 3105-3112.
doi: 10.1016/j.bbamem.2016.09.019
[77] Nyenhuis D A, Nilaweera T D, Cafiso D S. Native cell environment constrains loop structure in the Escherichia coli cobalamin transporter BtuB. Biophysical Journal, 2020, 119(8): 1550-1557.
doi: 10.1016/j.bpj.2020.08.034 pmid: 32946767
[78] Zhang L, Huang L, Huang M, et al. Effect of nutritional determinants and TonB on the natural transformation of Riemerella anatipestifer. Frontiers in Microbiology, 2021, 12: 644868.
doi: 10.3389/fmicb.2021.644868
[79] Wang M Y, Zhang P Y, Zhu D K, et al. Identification of the ferric iron utilization gene B739_1208 and its role in the virulence of R. anatipestifer CH-1. Veterinary Microbiology, 2017, 201: 162-169.
doi: 10.1016/j.vetmic.2017.01.027
[80] Liu M F, Huang M, Shui Y, et al. Roles of B739_ 1343 in iron acquisition and pathogenesis in Riemerella anatipestifer C...H-1 and eva...luation of the RA-CH-1ΔB739_1343 mutant as an attenuated vaccine. PLoS One, 2018, 13(5): e0197310.
doi: 10.1371/journal.pone.0197310
[1] 侯思佳,张倩倩,孙振美,陈静,孟剑桥,梁丹,邬荣领,郭允倩. WIND转录因子在植物响应伤口胁迫和器官生长发育中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 85-92.
[2] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[3] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[4] 郭利成,曹雪玮,傅龙云,王富军,赵健. 一种用于药物蛋白亲和纯化和跨膜转运的双功能标签的开发 *[J]. 中国生物工程杂志, 2020, 40(6): 40-52.
[5] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[6] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[7] 黄宇,黄书婷,张夕梅,刘堰. 稀有鮈鲫HSP70基因启动子的克隆及功能分析[J]. 中国生物工程杂志, 2019, 39(10): 9-16.
[8] 陈军,郑华军,刘亚铭,赵国屏,秦松. 雨生红球藻低覆盖度基因组草图分析 *[J]. 中国生物工程杂志, 2018, 38(7): 21-28.
[9] 徐嘉威,贺花,张静,雷初朝,陈宏,黄永震. 转录因子KLF8基因结构及其功能研究进展[J]. 中国生物工程杂志, 2018, 38(4): 90-95.
[10] 王艳红,刘艳双,石德喜,朱保国,吕保磊,付诗雨,徐苗,王伟,殷奎德. 新型YdjM超家族成员的钠/氢逆向转运蛋白功能鉴定 *[J]. 中国生物工程杂志, 2018, 38(12): 32-40.
[11] 王明轩, 陈海琴, 顾震南, 陈卫, 陈永泉. 高山被孢霉中Δ9脂肪酸脱饱和酶的表达、纯化和其细胞色素b5功能域的鉴定[J]. 中国生物工程杂志, 2017, 37(3): 43-50.
[12] 明金玉, 李化丹, 梁士博, 何莉, 于青含, 李集临, 张延明. 植物功能性靶向基因标记的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 83-91.
[13] 堵晶晶, 谭镇东, 刘辰东, 巫小倩, 张培文, 张顺华, 朱砺. 长链非编码RNA的研究现状[J]. 中国生物工程杂志, 2016, 36(9): 59-74.
[14] 扈丽丽, 卓侃, 林柏荣, 廖金铃. 植物寄生线虫效应蛋白功能分析方法的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 101-108.
[15] 王丽燕, 王煜, 吴坚平, 徐刚, 杨立荣. 腈水合酶NHaseK在大肠杆菌中的功能表达[J]. 中国生物工程杂志, 2016, 36(12): 42-48.